
Reliability Pillar
AWS Well-Architected Framework

July 2020

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Reliability .. 1

Design Principles.. 2

Definitions ... 3

Understanding Availability Needs .. 8

Foundations ... 9

Manage Service Quotas and Constraints .. 9

Plan your Network Topology .. 12

Workload Architecture ... 17

Design Your Workload Service Architecture ... 17

Design Interactions in a Distributed System to Prevent Failures.................................. 21

Design Interactions in a Distributed System to Mitigate or Withstand Failures............ 24

Change Management .. 31

Monitor Workload Resources .. 31

Design your Workload to Adapt to Changes in Demand .. 36

Implement Change ... 39

Failure Management.. 44

Back up Data .. 44

Use Fault Isolation to Protect Your Workload ... 47

Design your Workload to Withstand Component Failures .. 53

Test Reliability .. 58

Plan for Disaster Recovery (DR) ... 62

Example Implementations for Availability Goals .. 66

Dependency Selection ... 66

Single-Region Scenarios ... 67

Multi-Region Scenarios .. 77

Conclusion ... 87

Contributors ... 88

Further Reading ... 88

Document Revisions.. 89

Appendix A: Designed-For Availability for Select AWS Services 91

Abstract

The focus of this paper is the reliability pillar of the AWS Well-Architected Framework. It

provides guidance to help customers apply best practices in the design, delivery, and

maintenance of Amazon Web Services (AWS) environments.

https://aws.amazon.com/architecture/well-architected/

Amazon Web Services Reliability Pillar

 1

Introduction

The AWS Well-Architected Framework helps you understand the pros and cons of

decisions you make while building workloads on AWS. By using the Framework you will

learn architectural best practices for designing and operating reliable, secure, efficient,

and cost-effective workloads in the cloud. It provides a way to consistently measure

your architectures against best practices and identify areas for improvement. We

believe that having well-architected workload greatly increases the likelihood of

business success.

The AWS Well-Architected Framework is based on five pillars:

• Operational Excellence

• Security

• Reliability

• Performance Efficiency

• Cost Optimization

This paper focuses on the reliability pillar and how to apply it to your solutions.

Achieving reliability can be challenging in traditional on-premises environments due to

single points of failure, lack of automation, and lack of elasticity. By adopting the

practices in this paper you will build architectures that have strong foundations, resilient

architecture, consistent change management, and proven failure recovery processes.

This paper is intended for those in technology roles, such as chief technology officers

(CTOs), architects, developers, and operations team members. After reading this paper,

you will understand AWS best practices and strategies to use when designing cloud

architectures for reliability. This paper includes high-level implementation details and

architectural patterns, as well as references to additional resources.

Reliability

The reliability pillar encompasses the ability of a workload to perform its intended

function correctly and consistently when it’s expected to. This includes the ability to

operate and test the workload through its total lifecycle. This paper provides in-depth,

best practice guidance for implementing reliable workloads on AWS.

https://aws.amazon.com/architecture/well-architected/

Amazon Web Services Reliability Pillar

 2

Design Principles

In the cloud, there are a number of principles that can help you increase reliability. Keep

these in mind as we discuss best practices:

• Automatically recover from failure: By monitoring a workload for key

performance indicators (KPIs), you can trigger automation when a threshold is

breached. These KPIs should be a measure of business value, not of the

technical aspects of the operation of the service. This allows for automatic

notification and tracking of failures, and for automated recovery processes that

work around or repair the failure. With more sophisticated automation, it’s

possible to anticipate and remediate failures before they occur.

• Test recovery procedures: In an on-premises environment, testing is often

conducted to prove that the workload works in a particular scenario. Testing is

not typically used to validate recovery strategies. In the cloud, you can test how

your workload fails, and you can validate your recovery procedures. You can use

automation to simulate different failures or to recreate scenarios that led to

failures before. This approach exposes failure pathways that you can test and fix

before a real failure scenario occurs, thus reducing risk.

• Scale horizontally to increase aggregate workload availability: Replace one

large resource with multiple small resources to reduce the impact of a single

failure on the overall workload. Distribute requests across multiple, smaller

resources to ensure that they don’t share a common point of failure.

• Stop guessing capacity: A common cause of failure in on-premises workloads

is resource saturation, when the demands placed on a workload exceed the

capacity of that workload (this is often the objective of denial of service attacks).

In the cloud, you can monitor demand and workload utilization, and automate the

addition or removal of resources to maintain the optimal level to satisfy demand

without over- or under-provisioning. There are still limits, but some quotas can be

controlled and others can be managed (see Manage Service Quotas and

Constraints).

• Manage change in automation: Changes to your infrastructure should be made

using automation. The changes that need to be managed include changes to the

automation, which then can be tracked and reviewed.

Amazon Web Services Reliability Pillar

 3

Definitions

This whitepaper covers reliability in the cloud, describing best practice for these four

areas:

• Foundations

• Workload Architecture

• Change Management

• Failure Management

To achieve reliability you must start with the foundations—an environment where

service quotas and network topology accommodate the workload. The workload

architecture of the distributed system must be designed to prevent and mitigate failures.

The workload must handle changes in demand or requirements, and it must be

designed to detect failure and automatically heal itself.

Resiliency, and the components of Reliability

Reliability of a workload in the cloud depends on several factors, the primary of which is

Resiliency:

• Resiliency is the ability of a workload to recover from infrastructure or service

disruptions, dynamically acquire computing resources to meet demand, and

mitigate disruptions, such as misconfigurations or transient network issues.

The other factors impacting workload reliability are:

• Operational Excellence, which includes automation of changes, use of playbooks

to respond to failures, and Operational Readiness Reviews (ORRs) to confirm

that applications are ready for production operations.

• Security, which includes preventing harm to data or infrastructure from malicious

actors, which would impact availability. For example, encrypt backups to ensure

that data is secure.

• Performance Efficiency, which includes designing for maximum request rates

and minimizing latencies for your workload.

• Cost Optimization, which includes trade-offs such as whether to spend more on

EC2 instances to achieve static stability, or to rely on automatic scaling when

more capacity is needed.

Amazon Web Services Reliability Pillar

 4

Resiliency is the primary focus of this whitepaper.

The other four factors are also important and they are covered by their respective pillars

of the AWS Well-Architected Framework. We touch on them in the best practices, but

the focus here is on resiliency.

Availability

Availability (also known as service availability) is a commonly used metric to

quantitatively measure reliability.

• Availability is the percentage of time that a workload is available for use.

Available for use means that it performs its agreed function when required.

This percentage is calculated over a period of time, such as a month, year, or trailing

three years. Applying the strictest possible interpretation, availability is reduced anytime

that the application isn’t operating normally, including both scheduled and unscheduled

interruptions. We define availability using the following criteria:

• 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑈𝑠𝑒 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒

• A percentage of uptime (such as 99.9%) over a period of time (commonly a year)

• Common short-hand refers only to the “number of 9’s”; for example, “five nines”

translates to being 99.999% available

• Some customers choose to exclude scheduled service downtime (for example,

planned maintenance) from the Total Time in the formula in the first bullet.

However, this is often a false choice because your users might actually want to

use your service during these times.

Here is a table of common application availability design goals and the maximum length

of time that interruptions can occur within a year while still meeting the goal. The table

contains examples of the types of applications we commonly see at each availability

tier. Throughout this document, we refer to these values.

Availability

Maximum

Unavailability (per

year) Application Categories

99% 3 days 15 hours Batch processing, data extraction, transfer,

and load jobs

https://aws.amazon.com/architecture/well-architected/

Amazon Web Services Reliability Pillar

 5

Availability

Maximum

Unavailability (per

year) Application Categories

99.9% 8 hours 45 minutes Internal tools like knowledge management,

project tracking

99.95% 4 hours 22 minutes Online commerce, point of sale

99.99% 52 minutes Video delivery, broadcast workloads

99.999% 5 minutes ATM transactions, telecommunications

workloads

Calculating availability with hard dependencies. Many systems have hard

dependencies on other systems, where an interruption in a dependent system directly

translates to an interruption of the invoking system. This is opposed to a soft

dependency, where a failure of the dependent system is compensated for in the

application. Where such hard dependencies occur, the invoking system’s availability is

the product of the dependent systems’ availabilities. For example, if you have a system

designed for 99.99% availability that has a hard dependency on two other independent

systems that each are designed for 99.99% availability, the workload can theoretically

achieve 99.97% availability:

𝐴𝑣𝑎𝑖𝑙𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝐴𝑣𝑎𝑖𝑙𝑖𝑛𝑣𝑜𝑘 × 𝐴𝑣𝑎𝑖𝑙𝑑𝑒𝑝1 × 𝐴𝑣𝑎𝑖𝑙𝑑𝑒𝑝2

99.99% × 99.99% × 99.99% = 99.97%

It’s therefore important to understand your dependencies and their availability design

goals as you calculate your own.

Calculating availability with redundant components. When a system involves the

use of independent, redundant components (for example, redundant Availability Zones),

the theoretical availability is computed as 100% minus the product of the component

failure rates. For example, if a system makes use of two independent components, each

with an availability of 99.9%, the resulting system availability is 99.9999%:

Amazon Web Services Reliability Pillar

 6

𝐴𝑣𝑎𝑖𝑙𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝐴𝑣𝑎𝑖𝑙𝑀𝐴𝑋 − ((100% − 𝐴𝑣𝑎𝑖𝑙𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦) × (100% − 𝐴𝑣𝑎𝑖𝑙𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦))

100% − (0.1% × 0.1%) = 99.9999%

But what if I don’t know the availability of a dependency?

Calculating dependency availability. Some dependencies provide guidance on their

availability, including availability design goals for many AWS services (see Appendix A:

Designed-For Availability for Select AWS Services). But in cases where this isn’t

available (for example, a component where the manufacturer does not publish

availability information), one way to estimate is to determine the Mean Time Between

Failure (MTBF) and Mean Time to Recover (MTTR). An availability estimate can be

established by:

𝐴𝑣𝑎𝑖𝑙𝐸𝑆𝑇 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅

For example, if the MTBF is 150 days and the MTTR is 1 hour, the availability estimate

is 99.97%.

For additional details, see this document (Calculating Total System Availability), which

can help you calculate your availability.

Costs for availability. Designing applications for higher levels of availability typically

results in increased cost, so it’s appropriate to identify the true availability needs before

embarking on your application design. High levels of availability impose stricter

requirements for testing and validation under exhaustive failure scenarios. They require

automation for recovery from all manner of failures, and require that all aspects of

system operations be similarly built and tested to the same standards. For example, the

addition or removal of capacity, the deployment or rollback of updated software or

configuration changes, or the migration of system data must be conducted to the

desired availability goal. Compounding the costs for software development, at very high

levels of availability, innovation suffers because of the need to move more slowly in

deploying systems. The guidance, therefore, is to be thorough in applying the standards

and considering the appropriate availability target for the entire lifecycle of operating the

system.

Another way that costs escalate in systems that operate with higher availability design

goals is in the selection of dependencies. At these higher goals, the set of software or

services that can be chosen as dependencies diminishes based on which of these

http://www.delaat.net/rp/2013-2014/p17/report.pdf

Amazon Web Services Reliability Pillar

 7

services have had the deep investments we previously described. As the availability

design goal increases, it’s typical to find fewer multi-purpose services (such as a

relational database) and more purpose-built services. This is because the latter are

easier to evaluate, test, and automate, and have a reduced potential for surprise

interactions with included but unused functionality.

Recovery Time Objective (RTO) and Recovery Point Objective (RPO)

These terms are most often associated with Disaster Recovery (DR), which are a set of

objectives and strategies to recover workload availability in the case of a disaster.

Recovery Time Objective (RTO) - Defined by the organization. RTO is the maximum

acceptable delay between the interruption of service and restoration of service. This

determines what is considered an acceptable time window when service is unavailable.

Recovery point objective (RPO) - Defined by the organization. RPO is the maximum

acceptable amount of time since the last data recovery point. This determines what is

considered an acceptable loss of data between the last recovery point and the

interruption of service.

The relationship of RPO (Recovery Point Objective), RTO (Recovery Time Objective), and the

disaster event

RTO is similar to MTTR (Mean Time to Recovery) in that both measure the time

between the start of an outage and workload recovery. However MTTR is a mean value

taken over several availability impacting events over a period of time, while RTO is a

target, or maximum value allowed, for a single availability impacting event.

Amazon Web Services Reliability Pillar

 8

Understanding Availability Needs

It’s common to initially think of an application’s availability as a single target for the

application as a whole. However, upon closer inspection, we frequently find that certain

aspects of an application or service have different availability requirements. For

example, some systems might prioritize the ability to receive and store new data ahead

of retrieving existing data. Other systems prioritize real-time operations over operations

that change a system’s configuration or environment. Services might have very high

availability requirements during certain hours of the day, but can tolerate much longer

periods of disruption outside of these hours. These are a few of the ways that you can

decompose a single application into constituent parts, and evaluate the availability

requirements for each. The benefit of doing this is to focus your efforts (and expense)

on availability according to specific needs, rather than engineering the whole system to

the strictest requirement.

Recommendation

Critically evaluate the unique aspects to your applications and, where

appropriate, differentiate the availability design goals to reflect the needs of

your business.

Within AWS, we commonly divide services into the “data plane” and the “control plane.”

The data plane is responsible for delivering real-time service while control planes are

used to configure the environment. For example, Amazon EC2 instances, Amazon RDS

databases, and Amazon DynamoDB table read/write operations are all data plane

operations. In contrast, launching new EC2 instances or RDS databases, or adding or

changing table metadata in DynamoDB are all considered control plane operations.

While high levels of availability are important for all of these capabilities, the data planes

typically have higher availability design goals than the control planes.

Many AWS customers take a similar approach to critically evaluating their applications

and identifying subcomponents with different availability needs. Availability design goals

are then tailored to the different aspects, and the appropriate work efforts are executed

to engineer the system. AWS has significant experience engineering applications with a

range of availability design goals, including services with 99.999% or greater availability.

AWS Solution Architects (SAs) can help you design appropriately for your availability

goals. Involving AWS early in your design process improves our ability to help you meet

your availability goals. Planning for availability is not only done before your workload

launches. It’s also done continuously to refine your design as you gain operational

Amazon Web Services Reliability Pillar

 9

experience, learn from real world events, and endure failures of different types. You can

then apply the appropriate work effort to improve upon your implementation.

The availability needs that are required for a workload must be aligned to the business

need and criticality. By first defining business criticality framework with defined RTO,

RPO, and availability, you can then assess each workload. Such an approach requires

that the people involved in implementation of the workload are knowledgeable of the

framework, and the impact their workload has on business needs.

Foundations

Foundational requirements are those whose scope extends beyond a single workload or

project. Before architecting any system, foundational requirements that influence

reliability should be in place. For example, you must have sufficient network bandwidth

to your data center.

In an on-premises environment, these requirements can cause long lead times due to

dependencies and therefore must be incorporated during initial planning. With AWS

however, most of these foundational requirements are already incorporated or can be

addressed as needed. The cloud is designed to be nearly limitless, so it’s the

responsibility of AWS to satisfy the requirement for sufficient networking and compute

capacity, leaving you free to change resource size and allocations on demand.

The following sections explain best practices that focus on these considerations for

reliability:

• Manage service quotas and constraints

• Provision your network topology

Manage Service Quotas and Constraints

For cloud-based workload architectures, there are service quotas (which are also

referred to as service limits). These quotas exist to prevent accidentally provisioning

more resources than you need and to limit request rates on API operations so as to

protect services from abuse. There are also resource constraints, for example, the rate

that you can push bits down a fiber-optic cable, or the amount of storage on a physical

disk.

Amazon Web Services Reliability Pillar

 10

If you are using AWS Marketplace applications, you must understand the limitations of

those applications. If you are using third-party web services or software as a service,

you must be aware of those limits also.

Aware of service quotas and constraints: You are aware of your default quotas and

quota increase requests for your workload architecture. You additionally know which

resource constraints, such as disk or network, are potentially impactful.

Service Quotas is an AWS service that helps you manage your quotas for over 100

AWS services from one location. Along with looking up the quota values, you can also

request and track quota increases from the Service Quotas console or via the AWS

SDK. AWS Trusted Advisor offers a service quotas check that displays your usage and

quotas for some aspects of some services. The default service quotas per service are

also in the AWS documentation per respective service, for example, see Amazon VPC

Quotas. Rate limits on throttled APIs are set within the API Gateway itself by configuring

a usage plan. Other limits that are set as configuration on their respective services

include Provisioned IOPS, RDS storage allocated, and EBS volume allocations.

Amazon Elastic Compute Cloud (Amazon EC2) has its own service limits dashboard

that can help you manage your instance, Amazon Elastic Block Store (Amazon EBS),

and Elastic IP address limits. If you have a use case where service quotas impact your

application’s performance and they are not adjustable to your needs, then contact AWS

Support to see if there are mitigations.

Manage quotas across accounts and regions: If you are using multiple AWS

accounts or AWS Regions, ensure that you request the appropriate quotas in all

environments in which your production workloads run.

Service quotas are tracked per account. Unless otherwise noted, each quota is AWS

Region-specific.

In addition to the production environments, also manage quotas in all applicable non-

production environments, so that testing and development are not hindered.

Accommodate fixed service quotas and constraints through architecture: Be

aware of unchangeable service quotas and physical resources, and architect to prevent

these from impacting reliability.

Examples include network bandwidth, AWS Lambda payload size, throttle burst rate for

API Gateway, and concurrent user connections to an Amazon Redshift cluster.

Monitor and manage quotas: Evaluate your potential usage and increase your quotas

appropriately allowing for planned growth in usage.

https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html

Amazon Web Services Reliability Pillar

 11

For supported services, you can manage your quotas by configuring CloudWatch

alarms to monitor usage and alert you to approaching quotas. These alarms can be

triggered from Service Quotas or from Trusted Advisor. You can also use metric filters

on CloudWatch Logs to search and extract patterns in logs to determine if usage is

approaching quota thresholds.

Automate quota management: Implement tools to alert you when thresholds are being

approached. By using Service Quotas APIs, you can automate quota increase requests.

If you integrate your Configuration Management Database (CMDB) or ticketing system

with Service Quotas, you can automate the tracking of quota increase requests and

current quotas. In addition to the AWS SDK, Service Quotas offers automation using

AWS command line tools.

Ensure that a sufficient gap exists between the current quotas and the maximum

usage to accommodate failover: When a resource fails, it may still be counted against

quotas until it’s successfully terminated. Ensure that your quotas cover the overlap of all

failed resources with replacements before the failed resources are terminated. You

should consider an Availability Zone failure when calculating this gap.

Resources

Video

• AWS Live re:Inforce 2019 - Service Quotas

Documentation

• What Is Service Quotas?

• AWS Service Quotas (formerly referred to as service limits)

• Amazon EC2 Service Limits

• AWS Trusted Advisor Best Practice Checks (see the Service Limits section)

• AWS Limit Monitor on AWS Answers

• AWS Marketplace: CMDB products that help track limits

• APN Partner: partners that can help with configuration management

https://youtu.be/O9R5dWgtrVo
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://aws.amazon.com/answers/account-management/limit-monitor/
https://aws.amazon.com/marketplace/search/results?searchTerms=CMDB&ref=wellarchitected
https://aws.amazon.com/partners/find/results/?keyword=Configuration+Management&ref=wellarchitected

Amazon Web Services Reliability Pillar

 12

Plan your Network Topology

Workloads often exist in multiple environments. These include multiple cloud

environments (both publicly accessible and private) and possibly your existing data

center infrastructure. Plans must include network considerations, such as intrasystem

and intersystem connectivity, public IP address management, private IP address

management, and domain name resolution.

When architecting systems using IP address-based networks, you must plan network

topology and addressing in anticipation of possible failures, and to accommodate future

growth and integration with other systems and their networks.

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a private, isolated

section of the AWS Cloud where you can launch AWS resources in a virtual network.

Use highly available network connectivity for your workload public endpoints:

These endpoints and the routing to them must be highly available. To achieve this, use

highly available DNS, content delivery networks (CDNs), API Gateway, load balancing,

or reverse proxies.

Amazon Route 53, AWS Global Accelerator, Amazon CloudFront, Amazon API

Gateway, and Elastic Load Balancing (ELB) all provide highly available public

endpoints. You might also choose to evaluate AWS Marketplace software appliances

for load balancing and proxying.

Consumers of the service your workload provides, whether they are end-users or other

services, make requests on these service endpoints. Several AWS resources are

available to enable you to provide highly available endpoints.

Elastic Load Balancing provides load balancing across Availability Zones, performs

Layer 4 (TCP) or Layer 7 (http/https) routing, integrates with AWS WAF, and integrates

with AWS Auto Scaling to help create a self-healing infrastructure and absorb increases

in traffic while releasing resources when traffic decreases.

Amazon Route 53 is a scalable and highly available Domain Name System (DNS)

service that connects user requests to infrastructure running in AWS–such as Amazon

EC2 instances, Elastic Load Balancing load balancers, or Amazon S3 buckets–and can

also be used to route users to infrastructure outside of AWS.

AWS Global Accelerator is a network layer service that you can use to direct traffic to

optimal endpoints over the AWS global network.

Amazon Web Services Reliability Pillar

 13

Distributed Denial of Service (DDoS) attacks risk shutting out legitimate traffic and

lowering availability for your users. AWS Shield provides automatic protection against

these attacks at no extra cost for AWS service endpoints on your workload. You can

augment these features with virtual appliances from APN Partners and the AWS

Marketplace to meet your needs.

Provision redundant connectivity between private networks in the cloud and on-

premises environments: Use multiple AWS Direct Connect (DX) connections or VPN

tunnels between separately deployed private networks. Use multiple DX locations for

high availability. If using multiple AWS Regions, ensure redundancy in at least two of

them. You might want to evaluate AWS Marketplace appliances that terminate VPNs. If

you use AWS Marketplace appliances, deploy redundant instances for high availability

in different Availability Zones.

Direct Connect is a cloud service that makes it easy to establish a dedicated network

connection from your on-premises environment to AWS. Using Direct Connect

Gateway, your on-premises data center can be connected to multiple AWS VPCs

spread across multiple AWS Regions.

This redundancy addresses possible failures that impact connectivity resiliency:

• How are you going to be resilient to failures in your topology?

• What happens if you misconfigure something and remove connectivity?

• Will you be able to handle an unexpected increase in traffic/use of your services?

• Will you be able to absorb an attempted Distributed Denial of Service (DDoS)

attack?

When connecting your VPC to your on-premises data center via VPN, you should

consider the resiliency and bandwidth requirements that you need when you select the

vendor and instance size on which you need to run the appliance. If you use a VPN

appliance that is not resilient in its implementation, then you should have a redundant

connection through a second appliance. For all these scenarios, you need to define an

acceptable time to recovery and test to ensure that you can meet those requirements.

If you choose to connect your VPC to your data center using a Direct Connect

connection and you need this connection to be highly available, have redundant DX

connections from each data center. The redundant connection should use a second DX

connection from different location than the first. If you have multiple data centers,

ensure that the connections terminate at different locations. Use the Direct Connect

Resiliency Toolkit to help you set this up.

https://docs.aws.amazon.com/directconnect/latest/UserGuide/resilency_toolkit.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/resilency_toolkit.html

Amazon Web Services Reliability Pillar

 14

If you choose to fail over to VPN over the internet using AWS VPN, it’s important to

understand that it supports up to 1.25-Gbps throughput per VPN tunnel, but does not

support Equal Cost Multi Path (ECMP) for outbound traffic in the case of multiple AWS

Managed VPN tunnels terminating on the same VGW. We do not recommend that you

use AWS Managed VPN as a backup for Direct Connect connections unless you can

tolerate speeds less than 1 Gbps during failover.

You can also use VPC endpoints to privately connect your VPC to supported AWS

services and VPC endpoint services powered by AWS PrivateLink without traversing

the public internet. Endpoints are virtual devices. They are horizontally scaled,

redundant, and highly available VPC components. They allow communication between

instances in your VPC and services without imposing availability risks or bandwidth

constraints on your network traffic.

Ensure IP subnet allocation accounts for expansion and availability: Amazon VPC

IP address ranges must be large enough to accommodate workload requirements,

including factoring in future expansion and allocation of IP addresses to subnets across

Availability Zones. This includes load balancers, EC2 instances, and container-based

applications.

When you plan your network topology, the first step is to define the IP address space

itself. Private IP address ranges (following RFC 1918 guidelines) should be allocated for

each VPC. Accommodate the following requirements as part of this process:

• Allow IP address space for more than one VPC per Region.

• Within a VPC, allow space for multiple subnets that span multiple Availability

Zones.

• Always leave unused CIDR block space within a VPC for future expansion.

• Ensure that there is IP address space to meet the needs of any transient fleets of

EC2 instances that you might use, such as Spot Fleets for machine learning,

Amazon EMR clusters, or Amazon Redshift clusters.

• Note that the first four IP addresses and the last IP address in each subnet CIDR

block are reserved and not available for your use.

Amazon Web Services Reliability Pillar

 15

You should plan on deploying large VPC CIDR blocks. Note that the initial VPC CIDR

block allocated to your VPC cannot be changed or deleted, but you can add additional

non-overlapping CIDR blocks to the VPC. Subnet IPv4 CIDRs cannot be changed,

however IPv6 CIDRs can. Keep in mind that deploying the largest VPC possible (/16)

results in over 65,000 IP addresses. In the base 10.x.x.x IP address space alone, you

could provision 255 such VPCs. You should therefore err on the side of being too large

rather than too small to make it easier to manage your VPCs.

Prefer hub-and-spoke topologies over many-to-many mesh: If more than two

network address spaces (for example, VPCs and on-premises networks) are connected

via VPC peering, AWS Direct Connect, or VPN, then use a hub-and-spoke model, like

those provided by AWS Transit Gateway.

If you have only two such networks, you can simply connect them to each other, but as

the number of networks grows, the complexity of such meshed connections becomes

untenable. AWS Transit Gateway provides an easy to maintain hub-and-spoke model,

allowing the routing of traffic across your multiple networks.

Without AWS Transit Gateway: You need to peer each Amazon VPC to each other and to each

onsite location using a VPN connection, which can become complex as it scales.

Amazon Web Services Reliability Pillar

 16

With AWS Transit Gateway: You simply connect each Amazon VPC or VPN to the AWS Transit

Gateway and it routes traffic to and from each VPC or VPN.

Enforce non-overlapping private IP address ranges in all private address spaces

where they are connected: The IP address ranges of each of your VPCs must not

overlap when peered or connected via VPN. You must similarly avoid IP address

conflicts between a VPC and on-premises environments or with other cloud providers

that you use. You must also have a way to allocate private IP address ranges when

needed.

An IP address management (IPAM) system can help with this. Several IPAMs are

available from the AWS Marketplace.

Resources

Videos

• AWS re:Invent 2018: Advanced VPC Design and New Capabilities for Amazon

VPC (NET303)

• AWS re:Invent 2019: AWS Transit Gateway reference architectures for many

VPCs (NET406-R1)

Documentation

• What Is a Transit Gateway?

• What Is Amazon VPC?

https://youtu.be/fnxXNZdf6ew
https://youtu.be/fnxXNZdf6ew
https://youtu.be/9Nikqn_02Oc
https://youtu.be/9Nikqn_02Oc
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon Web Services Reliability Pillar

 17

• Working with Direct Connect Gateways

• Using the Direct Connect Resiliency Toolkit to get started

• Multiple data center HA network connectivity

• What Is AWS Global Accelerator?

• Using redundant Site-to-Site VPN connections to provide failover

• VPC Endpoints and VPC Endpoint Services (AWS PrivateLink)

• Amazon Virtual Private Cloud Connectivity Options Whitepaper

• AWS Marketplace for Network Infrastructure

• APN Partner: partners that can help plan your networking

Workload Architecture

A reliable workload starts with upfront design decisions for both software and

infrastructure. Your architecture choices will impact your workload behavior across all

five Well-Architected pillars. For reliability, there are specific patterns you must follow.

The following sections explain best practices to use with these patterns for reliability:

• Design your workload service architecture

• Design software in a distributed system to prevent failures

• Design software in a distributed system to mitigate failures

Design Your Workload Service Architecture

Build highly scalable and reliable workloads using a service-oriented architecture (SOA)

or a microservices architecture. Service-oriented architecture (SOA) is the practice of

making software components reusable via service interfaces. Microservices architecture

goes further to make components smaller and simpler.

Service-oriented architecture (SOA) interfaces use common communication standards

so that they can be rapidly incorporated into new workloads. SOA replaced the practice

of building monolith architectures, which consisted of interdependent, indivisible units.

At AWS, we have always used SOA, but have now embraced building our systems

using microservices. While microservices have several attractive qualities, the most

https://docs.aws.amazon.com/directconnect/latest/UserGuide/direct-connect-gateways.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/resilency_toolkit.html
https://aws.amazon.com/answers/networking/aws-multiple-data-center-ha-network-connectivity/
https://docs.aws.amazon.com/global-accelerator/latest/dg/what-is-global-accelerator.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPNConnections.html
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://aws.amazon.com/marketplace/b/2649366011/ref=wellarchitected
https://aws.amazon.com/partners/find/results/?keyword=network&ref=wellarchitected

Amazon Web Services Reliability Pillar

 18

important benefit for availability is that microservices are smaller and simpler. They

allow you to differentiate the availability required of different services, and thereby focus

investments more specifically to the microservices that have the greatest availability

needs. For example, to deliver product information pages on Amazon.com (“detail

pages”), hundreds of microservices are invoked to build discrete portions of the page.

While there are a few services that must be available to provide the price and the

product details, the vast majority of content on the page can simply be excluded if the

service isn’t available. Even such things as photos and reviews are not required to

provide an experience where a customer can buy a product.

Choose how to segment your workload: Monolithic architecture should be avoided.

Instead, you should choose between SOA and microservices. When making each

choice, balance the benefits against the complexities—what is right for a new product

racing to first launch is different than what a workload built to scale from the start needs.

The benefits of using smaller segments include greater agility, organizational flexibility,

and scalability. Complexities include possible increased latency, more complex

debugging, and increased operational burden.

Even if you choose to start with a monolith architecture, you must ensure that it’s

modular and has the ability to ultimately evolve to SOA or microservices as your product

scales with user adoption. SOA and microservices offer respectively smaller

segmentation, which is preferred as a modern scalable and reliable architecture, but

there are trade-offs to consider especially, when deploying a microservice architecture.

One is that you now have a distributed compute architecture that can make it harder to

achieve user latency requirements and there is additional complexity in debugging and

tracing of user interactions. AWS X-Ray can be used to assist you in solving this

problem. Another effect to consider is increased operational complexity as you

proliferate the number of applications that you are managing, which requires the

deployment of multiple independency components.

https://martinfowler.com/articles/microservice-trade-offs.html

Amazon Web Services Reliability Pillar

 19

Monolithic architecture versus microservices architecture

Build services focused on specific business domains and functionality: SOA

builds services with well-delineated functions defined by business needs. Microservices

use domain models and bounded context to limit this further so that each service does

just one thing. Focusing on specific functionality enables you to differentiate the

reliability requirements of different services, and target investments more specifically. A

concise business problem and small team associated with each service also enables

easier organizational scaling.

In designing a microservice architecture, it’s helpful to use Domain-Driven Design

(DDD) to model the business problem using entities. For example for Amazon.com

entities may include package, delivery, schedule, price, discount, and currency. Then

the model is further divided into smaller models using Bounded Context, where entities

that share similar features and attributes are grouped together. So using the Amazon

example package, delivery and schedule would be part of the shipping context, while

price, discount, and currency are part of the pricing context. With the model divided into

contexts, a template for how to boundary microservices emerges.

Create
domain
model

Define
bounded
contexts

Design
microservices

https://martinfowler.com/bliki/BoundedContext.html

Amazon Web Services Reliability Pillar

 20

Provide service contracts per API: Service contracts are documented agreements

between teams on service integration and include a machine-readable API definition,

rate limits, and performance expectations. A versioning strategy allows clients to

continue using the existing API and migrate their applications to the newer API when

they are ready. Deployment can happen anytime, as long as the contract is not violated.

The service provider team can use the technology stack of their choice to satisfy the

API contract. Similarly, the service consumer can use their own technology.

Microservices take the concept of SOA to the point of creating services that have a

minimal set of functionality. Each service publishes an API and design goals, limits, and

other considerations for using the service. This establishes a “contract” with calling

applications. This accomplishes three main benefits:

• The service has a concise business problem to be served and a small team that

owns the business problem. This allows for better organizational scaling.

• The team can deploy at any time as long as they meet their API and other

“contract” requirements

• The team can use any technology stack they want to as long as they meet their

API and other “contract” requirements.

Amazon API Gateway is a fully managed service that makes it easy for developers to

create, publish, maintain, monitor, and secure APIs at any scale. It handles all the tasks

involved in accepting and processing up to hundreds of thousands of concurrent API

calls, including traffic management, authorization and access control, monitoring, and

API version management. Using OpenAPI Specification (OAS), formerly known as the

Swagger Specification, you can define your API contract and import it into API Gateway.

With API Gateway, you can then version and deploy the APIs.

Resources

Documentation

• Amazon API Gateway: Configuring a REST API Using OpenAPI

• Implementing Microservices on AWS

• Microservices on AWS

External Links

• Microservices - a definition of this new architectural term

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-import-api.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/introduction.html
https://aws.amazon.com/microservices/
https://www.martinfowler.com/articles/microservices.html

Amazon Web Services Reliability Pillar

 21

• Microservice Trade-Offs

• Bounded Context (a central pattern in Domain-Driven Design)

Design Interactions in a Distributed System to Prevent

Failures

Distributed systems rely on communications networks to interconnect components,

such as servers or services. Your workload must operate reliably despite data loss or

latency in these networks. Components of the distributed system must operate in a way

that does not negatively impact other components or the workload. These best practices

prevent failures and improve mean time between failures (MTBF).

Identify which kind of distributed system is required: Hard real-time distributed

systems require responses to be given synchronously and rapidly, while soft real-time

systems have a more generous time window of minutes or more for response. Offline

systems handle responses through batch or asynchronous processing. Hard real-time

distributed systems have the most stringent reliability requirements.

The most difficult challenges with distributed systems are for the hard real-time

distributed systems, also known as request/reply services. What makes them difficult is

that requests arrive unpredictably and responses must be given rapidly (for example,

the customer is actively waiting for the response). Examples include front-end web

servers, the order pipeline, credit card transactions, every AWS API, and telephony.

Implement loosely coupled dependencies: Dependencies such as queuing systems,

streaming systems, workflows, and load balancers are loosely coupled. Loose coupling

helps isolate behavior of a component from other components that depend on it,

increasing resiliency and agility.

If changes to one component force other components that rely on it to also change, then

they are tightly coupled. Loose coupling breaks this dependency so that dependent

components only need to know the versioned and published interface. Implementing

loose coupling between dependencies isolates a failure in one from impacting another.

Loose coupling enables the freedom to add additional code or features to a component

while minimizing risk to components that depend on it. Also scalability is improved as

you can scale out or even change underlying implementation of the dependency.

To further improve resiliency through loose coupling, make component interactions

asynchronous where possible. This model is suitable for any interaction that does not

https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/bliki/BoundedContext.html
https://aws.amazon.com/builders-library/challenges-with-distributed-systems/

Amazon Web Services Reliability Pillar

 22

need an immediate response and where an acknowledgment that a request has been

registered will suffice. It involves one component that generates events and another that

consumes them. The two components do not integrate through direct point-to-point

interaction but usually through an intermediate durable storage layer, such as an SQS

queue or a streaming data platform such as Amazon Kinesis, or AWS Step Functions.

Dependencies such as queuing systems and load balancers are loosely coupled

Amazon SQS queues and Elastic Load Balancers are just two ways to add an

intermediate layer for loose coupling. Event-driven architectures can also be built in the

AWS Cloud using Amazon EventBridge, which can abstract clients (event producers)

from the services they rely on (event consumers). Amazon Simple Notification Service

is an effective solution when you need high-throughput, push-based, many-to-many

Amazon Web Services Reliability Pillar

 23

messaging. Using Amazon SNS topics, your publisher systems can fan out messages

to a large number of subscriber endpoints for parallel processing.

While queues offer several advantages, in most hard real-time systems, requests older

than a threshold time (often seconds) should be considered stale (the client has given

up and is no longer waiting for a response), and not processed. This way more recent

(and likely still valid requests) can be processed instead.

Make all responses idempotent: An idempotent service promises that each request is

completed exactly once, such that making multiple identical requests has the same

effect as making a single request. An idempotent service makes it easier for a client to

implement retries without fear that a request will be erroneously processed multiple

times. To do this, clients can issue API requests with an idempotency token—the same

token is used whenever the request is repeated. An idempotent service API uses the

token to return a response identical to the response that was returned the first time that

the request was completed.

In a distributed system, it’s easy to perform an action at most once (client makes only

one request), or at least once (keep requesting until client gets confirmation of success).

But it’s hard to guarantee an action is idempotent, which means it’s performed exactly

once, such that making multiple identical requests has the same effect as making a

single request. Using idempotency tokens in APIs, services can receive a mutating

request one or more times without creating duplicate records or side effects.

Do constant work: Systems can fail when there are large, rapid changes in load. For

example, a health check system that monitors the health of thousands of servers should

send the same size payload (a full snapshot of the current state) each time. Whether no

servers are failing, or all of them, the health check system is doing constant work with

no large, rapid changes.

For example, if the health check system is monitoring 100,000 servers, the load on it is

nominal under the normally light server failure rate. However, if a major event makes

half of those servers unhealthy, then the health check system would be overwhelmed

trying to update notification systems and communicate state to its clients. So instead the

health check system should send the full snapshot of the current state each time.

100,000 server health states, each represented by a bit, would only be a 12.5-KB

payload. Whether no servers are failing, or all of them are, the health check system is

doing constant work, and large, rapid changes are not a threat to the system stability.

This is actually how the control plane is designed for Amazon Route 53 health checks.

Amazon Web Services Reliability Pillar

 24

Resources

Videos

• AWS re:Invent 2019: Moving to event-driven architectures (SVS308)

• AWS re:Invent 2018: Close Loops & Opening Minds: How to Take Control of

Systems, Big & Small ARC337 (includes loose coupling, constant work, static

stability)

• AWS New York Summit 2019: Intro to Event-driven Architectures and Amazon

EventBridge (MAD205) (discusses EventBridge, SQS, SNS)

Documentation

• AWS Services That Publish CloudWatch Metrics

• What Is Amazon Simple Queue Service?

• Amazon EC2: Ensuring Idempotency

• The Amazon Builders' Library: Challenges with distributed systems

• Centralized Logging solution

• AWS Marketplace: products that can be used for monitoring and alerting

• APN Partner: partners that can help you with monitoring and logging

Design Interactions in a Distributed System to Mitigate

or Withstand Failures

Distributed systems rely on communications networks to interconnect components

(such as servers or services). Your workload must operate reliably despite data loss or

latency over these networks. Components of the distributed system must operate in a

way that does not negatively impact other components or the workload. These best

practices enable workloads to withstand stresses or failures, more quickly recover from

them, and mitigate the impact of such impairments. The result is improved mean time

to recovery (MTTR).

These best practices prevent failures and improve mean time between failures (MTBF).

Implement graceful degradation to transform applicable hard dependencies into

soft dependencies: When a component's dependencies are unhealthy, the component

https://www.youtube.com/watch?v=h46IquqjF3E
https://youtu.be/O8xLxNje30M
https://youtu.be/O8xLxNje30M
https://youtu.be/tvELVa9D9qU
https://youtu.be/tvELVa9D9qU
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Run_Instance_Idempotency.html
https://aws.amazon.com/builders-library/challenges-with-distributed-systems/
https://aws.amazon.com/solutions/centralized-logging/
https://aws.amazon.com/marketplace/search/results?searchTerms=log+management&ref=wellarchitected
https://aws.amazon.com/partners/find/results/?keyword=monitoring+logging&ref=wellarchitected

Amazon Web Services Reliability Pillar

 25

itself can still function, although in a degraded manner. For example, when a

dependency call fails, instead use a predetermined static response.

Consider a service B that is called by service A and in turn calls service C.

Service C fails when called from service B. Service B returns a degraded response to service A.

When service B calls service C, it received an error or timeout from it. Service B, lacking

a response from service C (and the data it contains) instead returns what it can. This

can be the last cached good value, or service B can substitute a pre-determined static

response for what it would have received from service C. It can then return a degraded

response to its caller, service A. Without this static response, the failure in service C

would cascade through service B to service A, resulting in a loss of availability.

As per the multiplicative factor in the availability equation for hard dependencies (see

Calculating availability with hard dependencies), any drop in the availability of C

seriously impacts effective availability of B. By returning the static response service B

mitigates the failure in C and, although degraded, makes service C’s availability look

like 100% availability (assuming it reliably returns the static response under error

conditions). Note that the static response is a simple alternative to returning an error,

and is not an attempt to re-compute the response using different means. Such attempts

at a completely different mechanism to try to achieve the same result are called fallback

behavior, and are an anti-pattern to be avoided.

Another example of graceful degradation is the circuit breaker pattern. Retry strategies

should be used when the failure is transient. When this is not the case, and the

operation is likely to fail, the circuit breaker pattern prevents the client from performing a

request that is likely to fail. When requests are being processed normally, the circuit

breaker is closed and requests flow through. When the remote system begins returning

errors or exhibits high latency, the circuit breaker opens and the dependency is ignored

or results are replaced with more simply obtained but less comprehensive responses

(which might simply be a response cache). Periodically, the system attempts to call the

dependency to determine if it has recovered. When that occurs, the circuit breaker is

closed.

Amazon Web Services Reliability Pillar

 26

Circuit breaker showing closed and open states.

In addition to the closed and open states shown in the diagram, after a configurable

period of time in the open state, the circuit breaker can transition to half-open. In this

state, it periodically attempts to call the service at a much lower rate than normal. This

probe is used to check the health of the service. After a number of successes in half-

open state, the circuit breaker transitions to closed, and normal requests resume.

Throttle requests: This is a mitigation pattern to respond to an unexpected increase in

demand. Some requests are honored but those over a defined limit are rejected and

return a message indicating they have been throttled. The expectation on clients is that

they will back off and abandon the request or try again at a slower rate.

Your services should be designed to a known capacity of requests that each node or

cell can process. This can be established through load testing. You then need to track

the arrival rate of requests and if the temporary arrival rate exceeds this limit, the

appropriate response is to signal that the request has been throttled. This allows the

user to retry, potentially to a different node/cell that might have available capacity.

Amazon API Gateway provides methods for throttling requests. Amazon SQS and

Amazon Kinesis can buffer requests, smoothing out request rate and alleviate the need

for throttling for requests that can be addressed asynchronously.

Amazon Web Services Reliability Pillar

 27

Control and limit retry calls: Use exponential backoff to retry after progressively

longer intervals. Introduce jitter to randomize those retry intervals, and limit the

maximum number of retries.

Typical components in a distributed software system include servers, load balancers,

databases, and DNS servers. In operation, and subject to failures, any of these can

start generating errors. The default technique for dealing with errors is to implement

retries on the client side. This technique increases the reliability and availability of the

application. However, at scale—and if clients attempt to retry the failed operation as

soon as an error occurs—the network can quickly become saturated with new and

retired requests, each competing for network bandwidth. This can result in a retry storm,

which will reduce availability of the service. This pattern might continue until a full

system failure occurs.

To avoid such scenarios, backoff algorithms such as the common exponential backoff

should be used. Exponential backoff algorithms gradually decrease the rate at which

retries are performed, thus avoiding network congestion.

Many SDKs and software libraries, including those from AWS, implement a version of

these algorithms. However, never assume a backoff algorithm exists—always test and

verify this to be the case.

Simple backoff alone is not enough because in distributed systems all clients may

backoff simultaneously, creating clusters of retry calls. Marc Brooker in his blog post

Exponential Backoff And Jitter, explains how to modify the wait() function in the

exponential backoff to prevent clusters of retry calls. The solution is to add jitter in the

wait() function. To avoid retrying for too long, implementations should cap the backoff

to a maximum value.

Finally, it’s important to configure a maximum number of retries or elapsed time, after

which retrying will simply fail. AWS SDKs implement this by default, and it can be

configured. For services lower in the stack, a maximum retry limit of zero or one will limit

risk yet still be effective as retries are delegated to services higher in the stack.

Fail fast and limit queues: If the workload is unable to respond successfully to a

request, then fail fast. This allows the releasing of resources associated with a request,

and permits the service to recover if it’s running out of resources. If the workload is able

to respond successfully but the rate of requests is too high, then use a queue to buffer

requests instead. However, do not allow long queues that can result in serving stale

requests that the client has already given up on.

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Amazon Web Services Reliability Pillar

 28

This best practice applies to the server-side, or receiver, of the request.

Be aware that queues can be created at multiple levels of a system, and can seriously

impede the ability to quickly recover as older stale requests (that no longer need a

response) are processed before newer requests in need of a response. Be aware of

places where queues exist. They often hide in workflows or in work that’s recorded to a

database.

Set client timeouts: Set timeouts appropriately, verify them systematically, and do not

rely on default values as they are generally set too high

This best practice applies to the client-side, or sender, of the request.

Set both a connection timeout and a request timeout on any remote call, and generally

on any call across processes. Many frameworks offer built-in timeout capabilities, but be

careful as many have default values that are infinite or too high. A value that is too high

reduces the usefulness of the timeout because resources continue to be consumed

while the client waits for the timeout to occur. A too low value can generate increased

traffic on the backend and increased latency because too many requests are retried. In

some cases, this can lead to complete outages because all requests are being retried.

To learn more about how Amazon use timeouts, retries, and backoff with jitter, refer to

the Builder’s Library: Timeouts, retries, and backoff with jitter.

Make services stateless where possible: Services should either not require state, or

should offload state such that between different client requests, there is no dependence

on locally stored data on disk or in memory. This enables servers to be replaced at will

without causing an availability impact. Amazon ElastiCache or Amazon DynamoDB are

good destinations for offloaded state.

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/?did=ba_card&trk=ba_card

Amazon Web Services Reliability Pillar

 29

In this stateless web application, session state is offloaded to Amazon ElastiCache.

When users or services interact with an application, they often perform a series of

interactions that form a session. A session is unique data for users that persists

between requests while they use the application. A stateless application is an

application that does not need knowledge of previous interactions and does not store

session information.

Once designed to be stateless, you can then use serverless compute platforms, such as

AWS Lambda or AWS Fargate.

In addition to server replacement, another benefit of stateless applications is that they

can scale horizontally because any of the available compute resources (such as EC2

instances and AWS Lambda functions) can service any request.

Implement emergency levers: These are rapid processes that may mitigate availability

impact on your workload. They can be operated in the absence of a root cause. An ideal

emergency lever reduces the cognitive burden on the resolvers to zero by providing fully

deterministic activation and deactivation criteria. Example levers include blocking all

robot traffic or serving a static response. Levers are often manual, but they can also be

automated.

Tips for implementing and using emergency levers:

Amazon Web Services Reliability Pillar

 30

• When levers are activated, do LESS, not more

• Keep it simple, avoid bimodal behavior

• Test your levers periodically

These are examples of actions that are NOT emergency levers:

• Add capacity

• Call up service owners of clients that depend on your service and ask them to

reduce calls

• Making a change to code and releasing it

Resources

Video

• Retry, backoff, and jitter: AWS re:Invent 2019: Introducing The Amazon Builders’

Library (DOP328)

Documentation

• Error Retries and Exponential Backoff in AWS

• Amazon API Gateway: Throttle API Requests for Better Throughput

• The Amazon Builders' Library: Timeouts, retries, and backoff with jitter

• The Amazon Builders' Library: Avoiding fallback in distributed systems

• The Amazon Builders' Library: Avoiding insurmountable queue backlogs

• The Amazon Builders' Library: Caching challenges and strategies

Labs

• Well-Architected lab: Level 300: Implementing Health Checks and Managing

Dependencies to Improve Reliability

External Links

• CircuitBreaker (summarizes Circuit Breaker from “Release It!” book)

Books

• Michael Nygard “Release It! Design and Deploy Production-Ready Software”

https://youtu.be/sKRdemSirDM?t=1884
https://youtu.be/sKRdemSirDM?t=1884
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://aws.amazon.com/builders-library/avoiding-fallback-in-distributed-systems
https://aws.amazon.com/builders-library/avoiding-insurmountable-queue-backlogs
https://aws.amazon.com/builders-library/caching-challenges-and-strategies/
https://wellarchitectedlabs.com/Reliability/300_Health_Checks_and_Dependencies/README.html?ref=wellarchitected
https://wellarchitectedlabs.com/Reliability/300_Health_Checks_and_Dependencies/README.html?ref=wellarchitected
https://martinfowler.com/bliki/CircuitBreaker.html
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers-ebook/dp/B00A32NXZO/

Amazon Web Services Reliability Pillar

 31

Change Management

Changes to your workload or its environment must be anticipated and accommodated to

achieve reliable operation of the workload. Changes include those imposed on your

workload such as spikes in demand, as well as those from within such as feature

deployments and security patches.

The following sections explain the best practices for change management:

• Monitor your resources

• Design your workload to adapt to changes in demand

• Implement change

Monitor Workload Resources

Logs and metrics are powerful tools to gain insight into the health of your workload. You

can configure your workload to monitor logs and metrics and send notifications when

thresholds are crossed or significant events occur. Monitoring enables your workload to

recognize when low-performance thresholds are crossed or failures occur, so it can

recover automatically in response.

Monitoring is critical to ensure that you are meeting your availability requirements. Your

monitoring needs to effectively detect failures. The worst failure mode is the “silent”

failure, where the functionality is no longer working, but there is no way to detect it

except indirectly. Your customers know before you do. Alerting when you have

problems is one of the primary reasons you monitor. Your alerting should be decoupled

from your systems as much as possible. If your service interruption removes your ability

to alert, you will have a longer period of interruption.

At AWS, we instrument our applications at multiple levels. We record latency, error

rates, and availability for each request, for all dependencies, and for key operations

within the process. We record metrics of successful operation as well. This allows us to

see impending problems before they happen. We don’t just consider average latency.

We focus even more closely on latency outliers, like the 99.9th and 99.99th percentile.

This is because if one request out of 1,000 or 10,000 is slow, that is still a poor

experience. Also, although your average may be acceptable, if one in 100 of your

requests causes extreme latency, it will eventually become a problem as your traffic

grows.

Monitoring at AWS consists of four distinct phases:

http://blog.tacertain.com/p-four-nines/

Amazon Web Services Reliability Pillar

 32

1. Generation — Monitor all components for the workload

2. Aggregation — Define and calculate metrics

3. Real-time processing and alarming — Send notifications and automate

responses

4. Storage and Analytics

Generation — Monitor all components for the workload: Monitor the components of

the workload with Amazon CloudWatch or third-party tools. Monitor AWS services with

Personal Health Dashboard.

All components of your workload should be monitored, including the front-end, business

logic, and storage tiers. Define key metrics and how to extract them from logs, if

necessary, and set create thresholds for corresponding alarm events

Monitoring in the cloud offers new opportunities. Most cloud providers have developed

customizable hooks and insights into multiple layers of your workload.

AWS makes an abundance of monitoring and log information available for consumption,

which can be used to define change-in-demand processes. The following is just a partial

list of services and features that generate log and metric data.

• Amazon ECS, Amazon EC2, Elastic Load Balancing, AWS Auto Scaling, and

Amazon EMR publish metrics for CPU, network I/O, and disk I/O averages.

• Amazon CloudWatch Logs can be enabled for Amazon Simple Storage Service

(Amazon S3), Classic Load Balancers, and Application Load Balancers.

• VPC Flow Logs can be enabled to analyze network traffic into and out of a VPC.

• AWS CloudTrail logs AWS account activity, including actions taken through the

AWS Management Console, AWS SDKs, command line tools.

• Amazon EventBridge delivers a real-time stream of system events that describes

changes in AWS services.

• AWS provides tooling to collect operating system-level logs and stream them into

CloudWatch Logs.

• Custom Amazon CloudWatch metrics can be used for metrics of any dimension.

• Amazon ECS and AWS Lambda stream log data to CloudWatch Logs.

Amazon Web Services Reliability Pillar

 33

• Amazon Machine Learning (Amazon ML), Amazon Rekognition, Amazon Lex,

and Amazon Polly provide metrics for successful and unsuccessful requests.

• AWS IoT provides metrics for number of rule executions as well as specific

success and failure metrics around the rules.

• Amazon API Gateway provides metrics for number of requests, erroneous

requests, and latency for your APIs.

• Personal Health Dashboard gives you a personalized view into the performance

and availability of the AWS services underlying your AWS resources.

In addition, monitor all of your external endpoints from remote locations to ensure that

they are independent of your base implementation. This active monitoring can be done

with synthetic transactions (sometimes referred to as “user canaries”, but not to be

confused with canary deployments) which periodically execute some number of

common tasks performed by consumers of the application. Keep these short in duration

and be sure not to overload your workflow during testing. Amazon CloudWatch

Synthetics enables you to create canaries to monitor your endpoints and APIs. You can

also combine the synthetic canary client nodes with AWS X-Ray console to pinpoint

which synthetic canaries are experiencing issues with errors, faults, or throttling rates

for the selected time frame.

Aggregation — Define and calculate metrics: Store log data and apply filters where

necessary to calculate metrics, such as counts of a specific log event, or latency

calculated from log event timestamps.

Amazon CloudWatch and Amazon S3 serve as the primary aggregation and storage

layers. For some services, like AWS Auto Scaling and ELB, default metrics are provided

“out the box” for CPU load or average request latency across a cluster or instance. For

streaming services, like VPC Flow Logs and AWS CloudTrail, event data is forwarded to

CloudWatch Logs and you need to define and apply metrics filters to extract metrics

from the event data. This gives you time series data, which can serve as inputs to

CloudWatch alarms that you define to trigger alerts.

Real-time processing and alarming — Send notifications: Organizations that need

to know receive notifications when significant events occur.

Alerts can also be sent to Amazon Simple Notification Service (Amazon SNS) topics,

and then pushed to any number of subscribers. For example, Amazon SNS can forward

alerts to an email alias so that technical staff can respond.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

Amazon Web Services Reliability Pillar

 34

Real-time processing and alarming — Automate responses: Use automation to take

action when an event is detected, for example, to replace failed components.

Alerts can trigger AWS Auto Scaling events, so that clusters react to changes in

demand. Alerts can be sent to Amazon Simple Queue Service (Amazon SQS), which

can serve as an integration point for third-party ticket systems. AWS Lambda can also

subscribe to alerts, providing users an asynchronous serverless model that reacts to

change dynamically. AWS Config continuously monitors and records your AWS

resource configurations, and can trigger AWS Systems Manager Automation to

remediate issues.

Storage and Analytics: Collect log files and metrics histories and analyze these for

broader trends and workload insights.

Amazon CloudWatch Logs Insights supports a simple yet powerful query language that

you can use to analyze log data. Amazon CloudWatch Logs also supports subscriptions

that allow data to flow seamlessly to Amazon S3 where you can use or Amazon Athena

to query the data. It supports queries on a large array of formats. For more information,

see Supported SerDes and Data Formats in the Amazon Athena User Guide. For

analysis of huge log file sets, you can run an Amazon EMR cluster to run petabyte-scale

analyses.

There are a number of tools provided by partners and third parties that allow for

aggregation, processing, storage, and analytics. These tools include New Relic, Splunk,

Loggly, Logstash, CloudHealth, and Nagios. However, outside generation of system

and application logs is unique to each cloud provider, and often unique to each service.

An often-overlooked part of the monitoring process is data management. You need to

determine the retention requirements for monitoring data, and then apply lifecycle

policies accordingly. Amazon S3 supports lifecycle management at the S3 bucket level.

This lifecycle management can be applied differently to different paths in the bucket.

Toward the end of the lifecycle, you can transition data to Amazon S3 Glacier for long-

term storage, and then expiration after the end of the retention period is reached. The

S3 Intelligent-Tiering storage class is designed to optimize costs by automatically

moving data to the most cost-effective access tier, without performance impact or

operational overhead.

Conduct reviews regularly: Frequently review how workload monitoring is

implemented and update it based on significant events and changes.

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/athena/latest/ug/supported-format.html

Amazon Web Services Reliability Pillar

 35

Effective monitoring is driven by key business metrics. Ensure these metrics are

accommodated in your workload as business priorities change.

Auditing your monitoring helps ensure that you know when an application is meeting its

availability goals. Root Cause Analysis requires the ability to discover what happened

when failures occur. AWS provides services that allow you to track the state of your

services during an incident:

• Amazon CloudWatch Logs: You can store your logs in this service and inspect

their contents.

• Amazon CloudWatch Logs Insights: Is a fully managed service that enables

you to run analyze massive logs in seconds. It gives you fast, interactive queries

and visualizations.

• AWS Config: You can see what AWS infrastructure was in use at different points

in time.

• AWS CloudTrail: You can see which AWS APIs were invoked at what time and

by what principal.

At AWS, we conduct a weekly meeting to review operational performance and to share

learnings between teams. Because there are so many teams in AWS, we created The

Wheel to randomly pick a workload to review. Establishing a regular cadence for

operational performance reviews and knowledge sharing enhances your ability to

achieve higher performance from your operational teams.

Monitor end-to-end tracing of requests through your system: Use AWS X-Ray or

third-party tools so that developers can more easily analyze and debug distributed

systems to understand how their applications and its underlying services are

performing.

Resources

Documentation

• Using Amazon CloudWatch Metrics

• Using Canaries (Amazon CloudWatch Synthetics)

• Amazon CloudWatch Logs Insights Sample Queries

• AWS Systems Manager Automation

• What is AWS X-Ray?

https://aws.amazon.com/blogs/opensource/the-wheel/
https://aws.amazon.com/blogs/opensource/the-wheel/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax-examples.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

Amazon Web Services Reliability Pillar

 36

• Debugging with Amazon CloudWatch Synthetics and AWS X-Ray

• The Amazon Builders' Library: Instrumenting distributed systems for operational

visibility

Design your Workload to Adapt to Changes in

Demand

A scalable workload provides elasticity to add or remove resources automatically so that

they closely match the current demand at any given point in time.

Use automation when obtaining or scaling resources: When replacing impaired

resources or scaling your workload, automate the process by using managed AWS

services, such as Amazon S3 and AWS Auto Scaling. You can also use third-party tools

and AWS SDKs to automate scaling.

Managed AWS services include Amazon S3, Amazon CloudFront, AWS Auto Scaling,

AWS Lambda, Amazon DynamoDB, AWS Fargate, and Amazon Route 53.

AWS Auto Scaling lets you detect and replace impaired instances. It also lets you build

scaling plans for resources including Amazon EC2 instances and Spot Fleets, Amazon

ECS tasks, Amazon DynamoDB tables and indexes, and Amazon Aurora Replicas.

When scaling EC2 instances or Amazon ECS containers hosted on EC2 instances,

ensure that you use multiple Availability Zones (preferably at least three) and add or

remove capacity to maintain balance across these Availability Zones.

When using AWS Lambda, they scale automatically. Every time an event notification is

received for your function, AWS Lambda quickly locates free capacity within its compute

fleet and runs your code up to the allocated concurrency. You need to ensure that the

necessary concurrency is configured on the specific Lambda, and in your Service

Quotas.

Amazon S3 automatically scales to handle high request rates. For example, your

application can achieve at least 3,500 PUT/COPY/POST/DELETE or 5,500 GET/HEAD

requests per second per prefix in a bucket. There are no limits to the number of prefixes

in a bucket. You can increase your read or write performance by parallelizing reads. For

example, if you create 10 prefixes in an Amazon S3 bucket to parallelize reads, you

could scale your read performance to 55,000 read requests per second.

https://aws.amazon.com/blogs/devops/debugging-with-amazon-cloudwatch-synthetics-and-aws-x-ray/
https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility/
https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/aurora/

Amazon Web Services Reliability Pillar

 37

Configure and use Amazon CloudFront or a trusted content delivery network. A content

delivery network (CDN) can provide faster end-user response times and can serve

requests for content that may cause unnecessary scaling of your workloads.

Obtain resources upon detection of impairment to a workload: Scale resources

reactively when necessary if availability is impacted, so as to restore workload

availability.

You first must configure health checks and the criteria on these checks to indicate when

availability is impacted by lack of resources. Then either notify the appropriate

personnel to manually scale the resource, or trigger automation to automatically scale it.

Scale can be manually adjusted for your workload, for example, changing the number of

EC2 instances in an Auto Scaling group or modifying throughput of a DynamoDB table

can be done through the console or AWS CLI. However automation should be used

whenever possible (see Use automation when scaling a workload up or down).

Obtain resources upon detection that more resources are needed for a workload:

Scale resources proactively to meet demand and avoid availability impact.

Many AWS services automatically scale to meet demand (see Use automation when

scaling a workload up or down). If using EC2 instances or Amazon ECS clusters, you

can configure automatic scaling of these to occur based on usage metrics that

correspond to demand for your workload. For Amazon EC2, average CPU utilization,

load balancer request count, or network bandwidth can be used to scale out (or scale

in) EC2 instances. For Amazon ECS, average CPU utilization, load balancer request

count, and memory utilization can be used to scale our (or scale in) ECS tasks. Using

Target Auto Scaling on AWS, the autoscaler acts like a household thermostat, adding or

removing resources to maintain the target value (for example, 70% CPU utilization) that

you specify.

AWS Auto Scaling can also do Predictive Auto Scaling, which uses machine learning to

analyze each resource's historical workload and regularly forecasts the future load for

the next two days.

Little’s Law helps calculate how many instances of compute (EC2 instances, concurrent

Lambda functions, etc.) that you need.

𝐿 = 𝜆𝑊

L = number of instances (or mean concurrency in the system)

λ = mean rate at which requests arrive (req/sec)

https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/

Amazon Web Services Reliability Pillar

 38

W = mean time that each request spends in the system (sec)

For example, at 100 rps, if each request takes 0.5 seconds to process, you will need 50

instances to keep up with demand.

Load test your workload: Adopt a load testing methodology to measure if scaling

activity will meet workload requirements.

It’s important to perform sustained load testing. Load tests should discover the breaking

point and test performance of your workload. AWS makes it easy to set up temporary

testing environments that model the scale of your production workload. In the cloud, you

can create a production-scale test environment on demand, complete your testing, and

then decommission the resources. Because you only pay for the test environment when

it's running, you can simulate your live environment for a fraction of the cost of testing

on premises.

Load testing in production should also be considered as part of game days where the

production system is stressed, during hours of lower customer usage, with all personnel

on hand to interpret results and address any problems that arise.

Resources

Documentation

• AWS Auto Scaling: How Scaling Plans Work

• What Is Amazon EC2 Auto Scaling?

• Managing Throughput Capacity Automatically with DynamoDB Auto Scaling

• What is Amazon CloudFront?

• Distributed Load Testing on AWS: simulate thousands of connected users

• AWS Marketplace: products that can be used with auto scaling

• APN Partner: partners that can help you create automated compute solutions

External Links

• Telling Stories About Little's Law

https://docs.aws.amazon.com/autoscaling/plans/userguide/how-it-works.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html?ref=wellarchitected
https://aws.amazon.com/solutions/distributed-load-testing-on-aws/
https://aws.amazon.com/marketplace/search/results?searchTerms=Auto+Scaling&ref=wellarchitected
https://aws.amazon.com/partners/find/results/?facets=%27Product%20:%20Compute%27&ref=wellarchitected
https://brooker.co.za/blog/2018/06/20/littles-law.html

Amazon Web Services Reliability Pillar

 39

Implement Change

Controlled changes are necessary to deploy new functionality and to ensure that the

workloads and the operating environment are running known, properly patched

software. If these changes are uncontrolled, then it makes it difficult to predict the effect

of these changes, or to address issues that arise because of them.

Use runbooks for standard activities such as deployment: Runbooks are the

predefined steps to achieve specific outcomes. Use runbooks to perform standard

activities, whether done manually or automatically. Examples include deploying a

workload, patching it, or making DNS modifications.

For example, put processes in place to ensure rollback safety during deployments.

Ensuring that you can roll back a deployment without any disruption for your customers

is critical in making a service reliable.

For runbook procedures, start with a valid effective manual process, implement it in

code, and trigger automated execution where appropriate.

Even for sophisticated workloads that are highly automated, runbooks are still useful for

running game days or meeting rigorous reporting and auditing requirements.

Note that playbooks are used in response to specific incidents, and runbooks are used

to achieve specific outcomes. Often, runbooks are for routine activities, while playbooks

are used for responding to non-routine events.

Integrate functional testing as part of your deployment: Functional tests are run as

part of automated deployment. If success criteria are not met, the pipeline is halted or

rolled back.

These tests are run in a pre-production environment, which is staged prior to production

in the pipeline. Ideally, this is done as part of a deployment pipeline.

Integrate resiliency testing as part of your deployment: Resiliency tests (as part of

chaos engineering) are run as part of the automated deployment pipeline in a pre-

production environment.

These tests are staged and run in the pipeline prior to production. They should also be

run in production, but as part of Game Days.

Deploy using immutable infrastructure: This is a model that mandates that no

updates, security patches, or configuration changes happen in-place on production

https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments

Amazon Web Services Reliability Pillar

 40

systems. When a change is needed, the architecture is built onto new infrastructure and

deployed into production.

The most common implementation of the immutable infrastructure paradigm is the

immutable server. This means that if a server needs an update or a fix, new servers are

deployed instead of updating the ones already in use. So, instead of logging into the

server via SSH and updating the software version, every change in the application

starts with a software push to the code repository, for example, git push. Since changes

are not allowed in immutable infrastructure, you can be sure about the state of the

deployed system. Immutable infrastructures are inherently more consistent, reliable,

and predictable, and they simplify many aspects of software development and

operations.

Use a canary or blue/green deployment when deploying applications in immutable

infrastructures.

Canary deployment is the practice of directing a small number of your customers to the

new version, usually running on a single service instance (the canary). You then deeply

scrutinize any behavior changes or errors that are generated. You can remove traffic

from the canary if you encounter critical problems and send the users back to the

previous version. If the deployment is successful, you can continue to deploy at your

desired velocity, while monitoring the changes for errors, until you are fully deployed.

AWS CodeDeploy can be configured with a deployment configuration that will enable a

canary deployment.

Blue/green deployment is similar to the canary deployment except that a full fleet of the

application is deployed in parallel. You alternate your deployments across the two

stacks (blue and green). Once again, you can send traffic to the new version, and fall

back to the old version if you see problems with the deployment. Commonly all traffic is

switched at once, however you can also use fractions of your traffic to each version to

dial up the adoption of the new version using the weighted DNS routing capabilities of

Amazon Route 53. AWS CodeDeploy and AWS Elastic Beanstalk can be configured

with a deployment configuration that will enable a blue/green deployment.

https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html

Amazon Web Services Reliability Pillar

 41

Blue/green deployment with AWS Elastic Beanstalk and Amazon Route 53

Benefits of immutable infrastructure:

• Reduction in configuration drifts: By frequently replacing servers from a base,

known and version-controlled configuration, the infrastructure is reset to a known

state, avoiding configuration drifts.

• Simplified deployments: Deployments are simplified because they don’t need to

support upgrades. Upgrades are just new deployments.

• Reliable atomic deployments: Deployments either complete successfully, or

nothing changes. It gives more trust in the deployment process.

• Safer deployments with fast rollback and recovery processes: Deployments are

safer because the previous working version is not changed. You can roll back to

it if errors are detected.

• Consistent testing and debugging environments: Since all servers use the same

image, there are no differences between environments. One build is deployed to

multiple environments. It also prevents inconsistent environments and simplifies

testing and debugging.

• Increased scalability: Since servers use a base image, are consistent, and

repeatable, automatic scaling is trivial.

• Simplified toolchain: The toolchain is simplified since you can get rid of

configuration management tools managing production software upgrades. No

extra tools or agents are installed on servers. Changes are made to the base

image, tested, and rolled-out.

Amazon Web Services Reliability Pillar

 42

• Increased security: By denying all changes to servers, you can disable SSH on

instances and remove keys. This reduces the attack vector, improving your

organization’s security posture.

Deploy changes with automation: Deployments and patching are automated to

eliminate negative impact.

Making changes to production systems is one of the largest risk areas for many

organizations. We consider deployments a first-class problem to be solved alongside

the business problems that the software addresses. Today, this means the use of

automation wherever practical in operations, including testing and deploying changes,

adding or removing capacity, and migrating data. AWS CodePipeline lets you manage

the steps required to release your workload. This includes a deployment state using

AWS CodeDeploy to automate deployment of application code to Amazon EC2

instances, on-premises instances, serverless Lambda functions, or Amazon ECS

services.

Recommendation

Although conventional wisdom suggests that you keep humans in the loop

for the most difficult operational procedures, we suggest that you automate

the most difficult procedures for that very reason.

Additional deployment patterns to minimize risk:

Feature flags (also known as feature toggles) are configuration options on an

application. You can deploy the software with a feature turned off, so that your

customers don’t see the feature. You can then turn on the feature, as you’d do for a

canary deployment, or you can set the change pace to 100% to see the effect. If the

deployment has problems, you can simply turn the feature back off without rolling back.

Fault isolated zonal deployment: One of the most important rules AWS has established

for its own deployments is to avoid touching multiple Availability Zones within a Region

at the same time. This is critical to ensuring that Availability Zones are independent for

purposes of our availability calculations. We recommend that you use similar

considerations in your deployments.

Operational Readiness Reviews (ORRs)

AWS finds it useful to perform operational readiness reviews that evaluate the

completeness of the testing, ability to monitor, and importantly, the ability to audit the

https://martinfowler.com/articles/feature-toggles.html
https://aws.amazon.com/builders-library/static-stability-using-availability-zones/

Amazon Web Services Reliability Pillar

 43

applications performance to its SLAs and provide data in the event of an interruption or

other operational anomaly. A formal ORR is conducted prior to initial production

deployment. AWS will repeat ORRs periodically (once per year, or before critical

performance periods) to ensure that there has not been “drift” from operational

expectations. For more information on operational readiness, see the Operational

Excellence pillar of the AWS Well-Architected Framework.

Recommendation

Conduct an Operational Readiness Review (ORR) for applications

prior to initial production use, and periodically thereafter.

Resources

Videos

• AWS Summit 2019: CI/CD on AWS

Documentation

• What Is AWS CodePipeline?

• What Is CodeDeploy?

• Overview of a Blue/Green Deployment

• Deploying Serverless Applications Gradually

• The Amazon Builders' Library: Ensuring rollback safety during deployments

• The Amazon Builders' Library: Going faster with continuous delivery

• AWS Marketplace: products that can be used to automate your deployments

• APN Partner: partners that can help you create automated deployment solutions

Labs

• Well-Architected lab: Level 300: Testing for Resiliency of EC2 RDS and S3

External Links

• CanaryRelease

https://wa.aws.amazon.com/wat.question.OPS_7.en.html
https://wa.aws.amazon.com/wat.question.OPS_7.en.html
https://aws.amazon.com/architecture/well-architected/
https://youtu.be/tQcF6SqWCoY
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html#welcome-deployment-overview-blue-green
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/automating-updates-to-serverless-apps.html
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments
https://aws.amazon.com/builders-library/going-faster-with-continuous-delivery/
https://aws.amazon.com/marketplace/search/results?searchTerms=DevOps&ref=wellarchitected
https://aws.amazon.com/partners/find/results/?keyword=devops&ref=wellarchitected
https://wellarchitectedlabs.com/Reliability/300_Testing_for_Resiliency_of_EC2_RDS_and_S3/README.html?ref=wellarchitected
https://martinfowler.com/bliki/CanaryRelease.html

Amazon Web Services Reliability Pillar

 44

Failure Management

Failures are a given and everything will eventually fail over time: from routers to
hard disks, from operating systems to memory units corrupting TCP packets,
from transient errors to permanent failures. This is a given, whether you are
using the highest-quality hardware or lowest cost components - Werner Vogels,
CTO - Amazon.com

Low-level hardware component failures are something to be dealt with every day in in

an on-premises data center. In the cloud, however, you should be protected against

most of these types of failures. For example, Amazon EBS volumes are placed in a

specific Availability Zone where they are automatically replicated to protect you from the

failure of a single component. All EBS volumes are designed for 99.999% availability.

Amazon S3 objects are stored across a minimum of three Availability Zones providing

99.999999999% durability of objects over a given year. Regardless of your cloud

provider, there is the potential for failures to impact your workload. Therefore, you must

take steps to implement resiliency if you need your workload to be reliability.

A prerequisite to applying the best practices discussed here is that you must ensure that

the people designing, implementing, and operating your workloads are aware of

business objectives and the reliability goals to achieve these. These people must be

aware of and trained for these reliability requirements.

The following sections explain the best practices for managing failures to prevent impact

on your workload:

• Back up data

• Use fault isolation to protect your workload

• Design your workload to withstand component failure

• Test resiliency

• Plan for disaster recovery (DR)

Back up Data

Back up data, applications, and configuration to meet requirements for recovery time

objectives (RTO) and recovery point objectives (RPO).

https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html
https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html

Amazon Web Services Reliability Pillar

 45

Identify and back up all data that needs to be backed up, or reproduce the data

from sources: Amazon S3 can be used as a backup destination for multiple data

sources. AWS services like Amazon EBS, Amazon RDS, and Amazon DynamoDB have

built in capabilities to create backups. Or third-party backup software can be used.

Alternatively, if the data can be reproduced from other sources to meet RPO, you may

not require a backup.

On-premises data can be backed up to the AWS Cloud using Amazon S3 buckets and

AWS Storage Gateway. Backup data can be archived using Amazon S3 Glacier or S3

Glacier Deep Archive for affordable, non-time sensitive cloud storage.

If you have loaded data from Amazon S3 to a data warehouse (like Amazon Redshift),

or MapReduce cluster (like Amazon EMR) to do analysis on that data, this may be an

example of data that can be reproduced from other sources. As long as the results of

these analyses are either stored somewhere or reproducible, you would not suffer a

data loss from a failure in the data warehouse or MapReduce cluster. Other examples

that can be reproduced from sources include caches (like Amazon ElastiCache) or RDS

read replicas.

Secure and encrypt backup: Detect access using authentication and authorization like

AWS Identity and Access Management (IAM), and detect data integrity compromise by

using encryption.

Amazon S3 supports several methods of encryption of your data at rest. Using server-

side encryption, Amazon S3 accepts your objects as unencrypted data, and then

encrypts them before persisting them. Using client-side encryption your workload

application is responsible for encrypting the data before it is sent to S3. Both methods

allow you to either use AWS Key Management Service (AWS KMS) to create and store

the data key, or you may provide your own key (which you are then responsible for).

Using AWS KMS, you can set policies using AWS IAM on who can and cannot access

your data keys and decrypted data.

For Amazon RDS, if you have chosen to encrypt your databases, then your backups are

encrypted also. DynamoDB backups are always encrypted.

Perform data backup automatically: Configure backups to be made automatically

based on a periodic schedule, or by changes in the dataset. RDS instances, EBS

volumes, DynamoDB tables, and S3 objects can all be configured for automatic backup.

AWS Marketplace solutions or third-party solutions can also be used.

Amazon Web Services Reliability Pillar

 46

Amazon Data Lifecycle Manager can be used to automate EBS snapshots. Amazon

RDS and Amazon DynamoDB enable continuous backup with Point in Time Recovery.

Amazon S3 versioning, once enabled, is automatic.

For a centralized view of your backup automation and history, AWS Backup provides a

fully managed, policy-based backup solution. It centralizes and automates the back up

of data across multiple AWS services in the cloud as well as on premises using the

AWS Storage Gateway.

In additional to versioning, Amazon S3 features replication. The entire S3 bucket can be

automatically replicated to another bucket in a different AWS Region.

Perform periodic recovery of the data to verify backup integrity and processes:

Validate that your backup process implementation meets your recovery time objective

(RTO) and recovery point objective (RPO) by performing a recovery test.

Using AWS, you can stand up a testing environment and restore your backups there to

assess RTO and RPO capabilities, and run tests on data content and integrity.

Additionally, Amazon RDS and Amazon DynamoDB allow point-in-time recovery (PITR).

Using continuous backup, you are able to restore your dataset to the state it was in at a

specified date and time.

Resources

Videos

• AWS re:Invent 2019: Deep dive on AWS Backup, ft. Rackspace (STG341)

Documentation

• What Is AWS Backup?

• Amazon S3: Protecting Data Using Encryption

• Encryption for Backups in AWS

• On-demand backup and restore for DynamoDB

• EFS-to-EFS backup

• AWS Marketplace: products that can be used for backup

• APN Partner: partners that can help with backup

https://youtu.be/av8DpL0uFjc
https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/encryption.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html?ref=wellarchitected
https://aws.amazon.com/solutions/efs-to-efs-backup-solution/
https://aws.amazon.com/marketplace/search/results?searchTerms=Backup&ref=wellarchitected
https://aws.amazon.com/partners/find/results/?keyword=Backup&ref=wellarchitected

Amazon Web Services Reliability Pillar

 47

Labs

• Well-Architected lab: Level 200: Testing Backup and Restore of Data

Use Fault Isolation to Protect Your Workload

Fault isolated boundaries limit the effect of a failure within a workload to a limited

number of components. Components outside of the boundary are unaffected by the

failure. Using multiple fault isolated boundaries, you can limit the impact on your

workload.

Deploy the workload to multiple locations: Distribute workload data and resources

across multiple Availability Zones or, where necessary, across AWS Regions. These

locations can be as diverse as required.

One of the bedrock principles for service design in AWS is the avoidance of single

points of failure in underlying physical infrastructure. This motivates us to build software

and systems that use multiple Availability Zones and are resilient to failure of a single

zone. Similarly, systems are built to be resilient to failure of a single compute node,

single storage volume, or single instance of a database. When building a system that

relies on redundant components, it’s important to ensure that the components operate

independently, and in the case of AWS Regions, autonomously. The benefits achieved

from theoretical availability calculations with redundant components are only valid if this

holds true.

Availability Zones

AWS Regions are composed of two or more Availability Zones that are designed to be

independent. Each Availability Zone is separated by a large physical distance from

other zones to avoid correlated failure scenarios due to environmental hazards like fires,

floods, and tornadoes. Each Availability Zone has independent physical infrastructure:

dedicated connections to utility power, standalone backup power sources, independent

mechanical services, and independent network connectivity within and beyond the

Availability Zone. Despite being geographically separated, Availability Zones are located

in the same regional area. This enables synchronous data replication (for example,

between databases) without undue impact on application latency. This allows

customers to use Availability Zones in an active/active or active/standby configuration.

Availability Zones are independent, and therefore application availability is increased

when multiple zones are used. Some AWS services (including the EC2 instance data

plane) are deployed as strictly zonal services where they have shared fate with the

Availability Zone as a whole. These services are used to independently operate

https://wellarchitectedlabs.com/Reliability/200_Testing_Backup_and_Restore_of_Data/README.html?ref=wellarchitected

Amazon Web Services Reliability Pillar

 48

resources (instances, databases, and other infrastructure) within the specific Availability

Zone. AWS has long offered multiple Availability Zones in our Regions.

Multi-tier architecture deployed across three Availability Zones. Note that Amazon S3 and

Amazon DynamoDB are always Multi-AZ automatically. The ELB also is deployed to all three

zones.

While AWS control planes typically provide the ability to manage resources within the

entire Region (multiple Availability Zones), certain control planes (including Amazon

EC2 and Amazon EBS) have the ability to filter results to a single Availability Zone.

When this is done, the request is processed only in the specified Availability Zone,

reducing exposure to disruption in other Availability Zones. Regional AWS services on

the other hand, internally use multiple Availability Zones in an active/active configuration

to achieve the availability design goals that we establish.

Recommendation

When your application relies on the availability of control plane APIs during

a disruption of one Availability Zone, use API filters to request results for a

single Availability Zone with each API request (for example, with

DescribeInstances.)

AWS Local Zones

AWS Local Zones act similarly to Availability Zones within their respective AWS Region

in that they can be selected as a placement location for zonal AWS resources like

Amazon Web Services Reliability Pillar

 49

subnets and EC2 instances. What makes them special is that they are located not in the

associated AWS Region, but near large population, industry, and IT centers where no

AWS Region exists today. Yet they still retain high-bandwidth, secure connection

between local workloads in the local zone and those running in the AWS Region. You

should use AWS Local Zones to deploy workloads closer to your users for low-latency

requirements.

Amazon Global Edge Network

Amazon Global Edge Network consists of edge locations in cities around the world.

Amazon CloudFront uses this network to deliver content to end users with lower

latency. AWS Global Accelerator enables you to create your workload endpoints in

these edge locations to provide onboarding to the AWS global network close to your

users. Amazon API Gateway enables edge-optimized API endpoints using a CloudFront

distribution to facilitate client access through the closest edge location.

AWS Regions

AWS Regions are designed to be autonomous, therefore, to use a multi-region

approach you would deploy dedicated copies of services to each Region.

Recommendation

Most reliability goals for a workload can be satisfied using a Multi-AZ

strategy within a single AWS Region. Only for workloads that have a

requirement to be multi-region, should you consider a multi-region

architecture.

AWS provides customers capability to operate services cross-region. For example,

Amazon Aurora Global Database, Amazon DynamoDB Global tables, cross-region

replication for Amazon S3, cross-region read replicas with Amazon RDS, and the ability

to copy various snapshots and Amazon Machine Images (AMIs) to other Regions.

However, we do so in ways that preserve the Region’s autonomy. There are very few

exceptions to this approach, including our services that provide global edge delivery

(such as Amazon CloudFront and Amazon Route 53), along with the control plane for

the AWS Identity and Access Management (IAM) service. The vast majority of services

operate entirely within a single Region.

On-premises data center

Amazon Web Services Reliability Pillar

 50

For workloads that run in an on-premises data center, architect a hybrid experience

when possible. AWS Direct Connect provides a dedicated network connection from your

premises to AWS enabling you to run in both.

Another option is to run AWS infrastructure and services on premises using AWS

Outposts. AWS Outposts is a fully managed service that extends AWS infrastructure,

AWS services, APIs, and tools to your data center. The same hardware infrastructure

used in the AWS Cloud is installed in your data center. Outposts are then connected to

the nearest AWS Region. You can then use Outposts to support your workloads that

have low latency or local data processing requirements.

Automate recovery for components constrained to a single location: If

components of the workload can only run in a single Availability Zone or on-premises

data center, you must implement the capability to do a complete rebuild of the workload

within defined recovery objectives.

If the best practice to deploy the workload to multiple locations is not possible due to

technological constraints, you must implement an alternate path to resiliency. You must

automate the ability to recreate necessary infrastructure, redeploy applications, and

recreate necessary data for these cases.

For example, Amazon EMR launches all nodes for a given cluster in the same

Availability Zone because running a cluster in the same zone improves performance of

the jobs flows as it provides a higher data access rate. If this component is required for

workload resilience, then you must have a way to re-deploy the cluster and its data.

Also for Amazon EMR, you should provision redundancy in ways other than using Multi-

AZ. You can provision multiple master nodes. Using EMR File System (EMRFS), data in

EMR can be stored in Amazon S3, which in turn can be replicated across multiple

Availability Zones or AWS Regions.

Similarly for Amazon Redshift, by default it provisions your cluster in a randomly

selected Availability Zone within the AWS Region that you select. All the cluster nodes

are provisioned in the same zone.

Use bulkhead architectures: Like the bulkheads on a ship, this pattern ensures that a

failure is contained to a small subset of requests/users so that the number of impaired

requests is limited, and most can continue without error. Bulkheads for data are usually

called partitions or shards, while bulkheads for services are known as cells.

In a cell-based architecture, each cell is a complete, independent instance of the service

and has a fixed maximum size. As load increases, workloads grow by adding more

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-ha-launch.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html

Amazon Web Services Reliability Pillar

 51

cells. A partition key is used on incoming traffic to determine which cell will process the

request. Any failure is contained to the single cell it occurs in, so that the number of

impaired requests is limited as other cells continue without error. It is important to

identify the proper partition key to minimize cross-cell interactions and avoid the need to

involve complex mapping services in each request. Services that require complex

mapping end up merely shifting the problem to the mapping services, while services

that require cross-cell interactions reduce the independence of cells (and thus the

assumed availability improvements of doing so).

Cell-based architecture

In his AWS blog post, Colm MacCarthaigh explains how Amazon Route 53 uses the

concept of shuffle sharding to isolate customer requests into shards. A shard in this

case consists of two or more cells. Based on partition key, traffic from a customer (or

resources, or whatever you want to isolate) is routed to its assigned shard. In the case

of eight cells with two cells per shard, and customers divided among the four shards,

25% of customers would experience impact in the event of a problem.

https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/

Amazon Web Services Reliability Pillar

 52

Service divided into four traditional shards of two cells each

With shuffle sharding, you create virtual shards of two cells each, and assign your

customers to one of those virtual shards. When a problem happens, you can still lose a

quarter of the whole service, but the way that customers or resources are assigned

means that the scope of impact with shuffle sharding is considerably smaller than 25%.

With eight cells, there are 28 unique combinations of two cells, which means that there

are 28 possible shuffle shards (virtual shards). If you have hundreds or thousands of

customers, and assign each customer to a shuffle shard, then the scope of impact due

to a problem is just 1/28th. That’s seven times better than regular sharding.

Service divided into 28 shuffle shards (virtual shared) of two cells each (only two shuffle shards

out of the 28 possible are shown)

A shard can be used for servers, queues, or other resources in addition to cells.

Amazon Web Services Reliability Pillar

 53

Resources

Videos

• AWS re:Invent 2018: Architecture Patterns for Multi-Region Active-Active

Applications (ARC209-R2)

• Shuffle-sharding: AWS re:Invent 2019: Introducing The Amazon Builders’ Library

(DOP328)

• AWS re:Invent 2018: How AWS Minimizes the Blast Radius of Failures

(ARC338)

• AWS re:Invent 2019: Innovation and operation of the AWS global network

infrastructure (NET339)

Documentation

• What is AWS Outposts?

• Global Tables: Multi-Region Replication with DynamoDB

• AWS Local Zones FAQ

• AWS Global Infrastructure

• Regions, Availability Zones, and Local Zones

• The Amazon Builders' Library: Workload isolation using shuffle-sharding

Design your Workload to Withstand Component

Failures

Workloads with a requirement for high availability and low mean time to recovery

(MTTR) must be architected for resiliency.

Monitor all components of the workload to detect failures: Continuously monitor the

health of your workload so that you and your automated systems are aware of

degradation or complete failure as soon as they occur. Monitor for key performance

indicators (KPIs) based on business value.

All recovery and healing mechanisms must start with the ability to detect problems

quickly. Technical failures should be detected first so that they can be resolved.

However, availability is based on the ability of your workload to deliver business value,

so this needs to be a key measure of your detection and remediation strategy.

https://youtu.be/2e29I3dA8o4
https://youtu.be/2e29I3dA8o4
https://youtu.be/sKRdemSirDM?t=1373
https://youtu.be/sKRdemSirDM?t=1373
https://youtu.be/swQbA4zub20
https://youtu.be/swQbA4zub20
https://youtu.be/UObQZ3R9_4c
https://youtu.be/UObQZ3R9_4c
https://docs.aws.amazon.com/outposts/latest/userguide/what-is-outposts.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://aws.amazon.com/about-aws/global-infrastructure/localzones/faqs/
https://aws.amazon.com/about-aws/global-infrastructure
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/builders-library/workload-isolation-using-shuffle-sharding/

Amazon Web Services Reliability Pillar

 54

Failover to healthy resources: Ensure that if a resource failure occurs, that healthy

resources can continue to serve requests. For location failures (such as Availability

Zone or AWS Region) ensure you have systems in place to failover to healthy

resources in unimpaired locations.

This is easier for individual resource failures (such as an EC2 instance) or impairment of

an Availability Zone in a multi-AZ workload, as AWS services, such as Elastic Load

Balancing and AWS Auto Scaling, help distribute load across resources and Availability

Zones. For multi-region workloads, this is more complicated. For example, cross-region

read replicas enable you to deploy your data to multiple AWS Regions, but you still

must promote the read replica to master and point your traffic at it in the event of a

primary location failure. Amazon Route 53 and AWS Global Accelerator can also help

route traffic across AWS Regions.

If your workload is using AWS services, such as Amazon S3 or Amazon DynamoDB,

then they are automatically deployed to multiple Availability Zones. In case of failure,

the AWS control plane automatically routes traffic to healthy locations for you. For

Amazon RDS, you must choose Multi-AZ as a configuration option, and then on failure

AWS automatically directs traffic to the healthy instance. For Amazon EC2 instances or

Amazon ECS tasks, you choose which Availability Zones to deploy to. Elastic Load

Balancing then provides the solution to detect instances in unhealthy zones and route

traffic to the healthy ones. Elastic Load Balancing can even route traffic to components

in your on-premises data center.

For Multi-Region approaches (which might also include on-premises data centers),

Amazon Route 53 provides a way to define internet domains, and assign routing

policies that can include health checks to ensure that traffic is routed to healthy regions.

Alternately, AWS Global Accelerator provides static IP addresses that act as a fixed

entry point to your application, then routes to endpoints in AWS Regions of your

choosing, using the AWS global network instead of the internet for better performance

and reliability.

AWS approaches the design of our services with fault recovery in mind. We design

services to minimize the time to recover from failures and impact on data. Our services

primarily use data stores that acknowledge requests only after they are durably stored

across multiple replicas. These services and resources include Amazon Aurora,

Amazon Relational Database Service (Amazon RDS) Multi-AZ DB instances, Amazon

S3, Amazon DynamoDB, Amazon Simple Queue Service (Amazon SQS), and Amazon

Elastic File System (Amazon EFS). They are constructed to use cell-based isolation and

use the independence of Availability Zones. We use automation extensively in our

Amazon Web Services Reliability Pillar

 55

operational procedures. We also optimize our replace-and-restart functionality to

recover quickly from interruptions.

Automate healing on all layers: Upon detection of a failure, use automated

capabilities to perform actions to remediate.

Ability to restart is an important tool to remediate failures. As discussed previously for

distributed systems, a best practice is to make services stateless where possible. This

prevents loss of data or availability on restart. In the cloud, you can (and generally

should) replace the entire resource (for example, EC2 instance, or Lambda function) as

part of the restart. The restart itself is a simple and reliable way to recover from failure.

Many different types of failures occur in workloads. Failures can occur in hardware,

software, communications, and operations. Rather than constructing novel mechanisms

to trap, identify, and correct each of the different types of failures, map many different

categories of failures to the same recovery strategy. An instance might fail due to

hardware failure, an operating system bug, memory leak, or other causes. Rather than

building custom remediation for each situation, treat any of them as an instance failure.

Terminate the instance, and allow AWS Auto Scaling to replace it. Later, carry out the

analysis on the failed resource out of band.

Another example is the ability to restart a network request. Apply the same recovery

approach to both a network timeout and a dependency failure where the dependency

returns an error. Both events have a similar effect on the system, so rather than

attempting to make either event a “special case”, apply a similar strategy of limited retry

with exponential backoff and jitter.

Ability to restart is a recovery mechanism featured in Recovery Oriented Computing

(ROC) and high availability cluster architectures.

Amazon EventBridge can be used to monitor and filter for events such as CloudWatch

Alarms or changes in state in other AWS services. Based on event information, it can

then trigger AWS Lambda (or other targets) to execute custom remediation logic on

your workload.

Amazon EC2 Auto Scaling can be configured to check for EC2 instance health. If the

instance is in any state other than running, or if the system status is impaired, Amazon

EC2 Auto Scaling considers the instance to be unhealthy and launches a replacement

instance. If using AWS OpsWorks, you can configure Auto Healing of EC2 instances at

the layer level.

Amazon Web Services Reliability Pillar

 56

For large-scale replacements (such as the loss of an entire Availability Zone), static

stability is preferred for high availability instead of trying to obtain multiple new

resources at once.

Use static stability to prevent bimodal behavior: Bimodal behavior is when your

workload exhibits different behavior under normal and failure modes, for example,

relying on launching new instances if an Availability Zone fails. You should instead build

systems that are statically stable and operate in only one mode. In this case, provision

enough instances in each zone to handle workload load if one zone were removed and

then use Elastic Load Balancing or Amazon Route 53 health checks to shift load away

from the impaired instances.

Static stability for compute deployment (such as EC2 instances or containers) will result

in the highest reliability. This must be weighed against cost concerns. It’s less

expensive to provision less compute capacity and rely on launching new instances in

the case of a failure. But for large-scale failures (such as an Availability Zone failure)

this approach is less effective because it relies on reacting to impairments as they

happen, rather than being prepared for those impairments before they happen. Your

solution should weigh reliability versus the cost needs for your workload. By using more

Availability Zones, the amount of additional compute you need for static stability

decreases.

After traffic has shifted, use AWS Auto Scaling to asynchronously replace instances

from the failed zone and launch them in the healthy zones.

Amazon Web Services Reliability Pillar

 57

Another example of bimodal behavior would be a network timeout that could cause a

system to attempt to refresh the configuration state of the entire system. This would add

unexpected load to another component, and might cause it to fail, triggering other

unexpected consequences. This negative feedback loop impacts availability of your

workload. Instead, you should build systems that are statically stable and operate in

only one mode. A statically stable design would be to do constant work, and always

refresh the configuration state on a fixed cadence. When a call fails, the workload uses

the previously cached value, and triggers an alarm.

Another example of bimodal behavior is allowing clients to bypass your workload cache

when failures occur. This might seem to be a solution that accommodates client needs,

but should not be allowed because it significantly changes the demands on your

workload and is likely to result in failures.

Send notifications when events impact availability: Notifications are sent upon the

detection of significant events, even if the issue caused by the event was automatically

resolved.

Automated healing enables you workload to be reliable. However it can also obscure

underlying problems that need to be addressed. Implement appropriate monitoring and

events so that you can detect patterns of problems, including those addressed by auto

healing, so that you can resolve root cause issues. Amazon CloudWatch Alarms can be

triggered based on failures that occur. They can also trigger based on automated

healing actions executed. CloudWatch Alarms can be configured to send emails, or to

log incidents in third-party incident tracking systems using Amazon SNS integration.

Resources

Videos

• Static stability in AWS: AWS re:Invent 2019: Introducing The Amazon Builders’

Library (DOP328)

Documentation

• AWS OpsWorks: Using Auto Healing to Replace Failed Instances

• What Is Amazon EventBridge?

• Amazon Route 53: Choosing a Routing Policy

• What Is AWS Global Accelerator?

• The Amazon Builders' Library: Static stability using Availability Zones

https://youtu.be/sKRdemSirDM?t=704
https://youtu.be/sKRdemSirDM?t=704
https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autohealing.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/what-is-global-accelerator.html
https://aws.amazon.com/builders-library/static-stability-using-availability-zones

Amazon Web Services Reliability Pillar

 58

• The Amazon Builders' Library: Implementing health checks

• AWS Marketplace: products that can be used for fault tolerance

• APN Partner: partners that can help with automation of your fault tolerance

Labs

• Well-Architected lab: Level 300: Implementing Health Checks and Managing

Dependencies to Improve Reliability

External Links

• The Berkeley/Stanford Recovery-Oriented Computing (ROC) Project

Test Reliability

After you have designed your workload to be resilient to the stresses of production,

testing is the only way to ensure that it will operate as designed, and deliver the

resiliency you expect.

Test to validate that your workload meets functional and non-functional requirements,

because bugs or performance bottlenecks can impact the reliability of your workload.

Test the resiliency of your workload to help you find latent bugs that only surface in

production. Exercise these tests regularly.

Use playbooks to investigate failures: Enable consistent and prompt responses to

failure scenarios that are not well understood, by documenting the investigation process

in playbooks. Playbooks are the predefined steps performed to identify the factors

contributing to a failure scenario. The results from any process step are used to

determine the next steps to take until the issue is identified or escalated.

The playbook is proactive planning that you must do, so as to be able to take reactive

actions effectively. When failure scenarios not covered by the playbook are encountered

in production, first address the issue (put out the fire). Then go back and look at the

steps you took to address the issue and use these to add a new entry in the playbook.

Note that playbooks are used in response to specific incidents, while runbooks are used

to achieve specific outcomes. Often, runbooks are used for routine activities and

playbooks are used to respond to non-routine events.

Perform post-incident analysis: Review customer-impacting events, and identify the

contributing factors and preventative action items. Use this information to develop

mitigations to limit or prevent recurrence. Develop procedures for prompt and effective

https://aws.amazon.com/builders-library/implementing-health-checks/
https://aws.amazon.com/marketplace/search/results?searchTerms=fault+tolerance&ref=wellarchitected
https://aws.amazon.com/partners/find/results/?keyword=automation&ref=wellarchitected
https://wellarchitectedlabs.com/Reliability/300_Health_Checks_and_Dependencies/README.html?ref=wellarchitected
https://wellarchitectedlabs.com/Reliability/300_Health_Checks_and_Dependencies/README.html?ref=wellarchitected
http://roc.cs.berkeley.edu/

Amazon Web Services Reliability Pillar

 59

responses. Communicate contributing factors and corrective actions as appropriate,

tailored to target audiences.

Assess why existing testing did not find the issue. Add tests for this case if tests do not

already exist.

Test functional requirements: These include unit tests and integration tests that

validate required functionality.

You achieve the best outcomes when these tests are run automatically as part of build

and deployment actions. For instance, using AWS CodePipeline, developers commit

changes to a source repository where CodePipeline automatically detects the changes.

Those changes are built, and tests are run. After the tests are complete, the built code

is deployed to staging servers for testing. From the staging server, CodePipeline runs

more tests, such as integration or load tests. Upon the successful completion of those

tests, CodePipeline deploys the tested and approved code to production instances.

Additionally, experience shows that synthetic transaction testing (also known as “canary

testing”, but not to be confused with canary deployments) that can run and simulate

customer behavior is among the most important testing processes. Run these tests

constantly against your workload endpoints from diverse remote locations. Amazon

CloudWatch Synthetics enables you to create canaries to monitor your endpoints and

APIs.

Test scaling and performance requirements: This includes load testing to validate

that the workload meets scaling and performance requirements.

In the cloud, you can create a production-scale test environment on demand for your

workload. If you run these tests on scaled down infrastructure, you must scale your

observed results to what you think will happen in production. Load and performance

testing can also be done in production if you are careful not to impact actual users, and

tag your test data so it does not comingle with real user data and corrupt usage

statistics or production reports.

With testing, ensure that your base resources, scaling settings, service quotas, and

resiliency design operate as expected under load.

Test resiliency using chaos engineering: Run tests that inject failures regularly into

pre-production and production environments. Hypothesize how your workload will react

to the failure, then compare your hypothesis to the testing results and iterate if they do

not match. Ensure that production testing does not impact users.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

Amazon Web Services Reliability Pillar

 60

In the cloud, you can test how your workload fails, and you can validate your recovery

procedures. You can use automation to simulate different failures or to recreate

scenarios that led to failures before. This exposes failure pathways that you can test

and fix before a real failure scenario occurs, thus reducing risk.

Chaos Engineering is the discipline of experimenting on a system in order to
build confidence in the system’s capability to withstand turbulent conditions in
production. – Principles of Chaos Engineering

In pre-production and testing environments, chaos engineering should be done

regularly, and be part of your CI/CD cycle. In production, teams must take care not to

disrupt availability, and should use game days as a way to control risk of chaos

engineering in production.

The testing effort should be commensurate with your availability goals. Testing to

ensure that you can meet your availability goals is the only way you can have

confidence that you will meet those goals.

Test for component failures that you have designed your workload to be resilient

against. These include loss of EC2 instances, failure of the primary Amazon RDS

database instance, and Availability Zone outages.

Test for external dependency unavailability. Your workload’s resiliency to transient

failures of dependencies should be tested for durations that may last from less than a

second to hours.

Other modes of degradation might cause reduced functionality and slow responses,

often resulting in a brownout of your services. Common sources of this degradation are

increased latency on critical services and unreliable network communication (dropped

packets). You want to use the ability to inject such failures into your system, including

networking effects, such as latency and dropped messages, and DNS failures, such as

being unable to resolve a name or not being able to establish connections to dependent

services.

There are several third-party options for injecting failures. These include open source

options such as Netflix Chaos Monkey, The Chaos ToolKit, and Shopify Toxiproxy, as

well as commercial options like Gremlin. We advise that initial investigations of how to

implement chaos engineering use self-authored scripts. This enables engineering teams

to become comfortable with how chaos is introduced into their workloads. For examples

of these, see Testing for Resiliency of EC2 RDS and S3 using multiple languages such

https://principlesofchaos.org/
https://github.com/netflix/chaosmonkey
https://chaostoolkit.org/
https://github.com/Shopify/toxiproxy
https://www.gremlin.com/
https://wellarchitectedlabs.com/Reliability/300_Testing_for_Resiliency_of_EC2_RDS_and_S3/README.html

Amazon Web Services Reliability Pillar

 61

as a Bash, Python, Java, and PowerShell. You should also implement Injecting Chaos

to Amazon EC2 using AWS Systems Manager, which enables you to simulate

brownouts and high CPU conditions using AWS Systems Manager Documents.

Conduct game days regularly: Use game days to regularly exercise your failure

procedures as close to production as possible (including in production environments)

with the people who will be involved in actual failure scenarios. Game days enforce

measures to ensure that production testing does not impact users.

Test how your architecture and processes perform by regularly scheduling game days

to simulate events in production. This testing will help you understand where

improvements can be made and can help develop organizational experience in dealing

with events.

After your design for resiliency is in place and has been tested in non-production

environments, a game day is the way to ensure that everything works as planned in

production. A game day, especially the first one, is an “all hands on deck” activity where

engineers and operations are all informed when it will happen, and what will occur.

Playbooks are in place. Fault is then injected into the production systems in the

prescribed manner, and impact is assessed. If all systems operate as designed,

detection and self-healing will occur with little to no impact. However, if negative impact

is observed, the test is rolled back and the workload issues are remedied, manually if

necessary (using the playbook). Since game days take place in production, all

precautions should be taken to ensure that there is no impact on availability to your

customers.

Resources

Videos

• AWS re:Invent 2019: Improving resiliency with chaos engineering (DOP309-R1)

Documentation

• Continuous Delivery and Continuous Integration

• Using Canaries (Amazon CloudWatch Synthetics)

• Use CodePipeline with AWS CodeBuild to test code and run builds

• Automate your operational playbooks with AWS Systems Manager

• AWS Marketplace: products that can be used for continuous integration

https://medium.com/@adhorn/injecting-chaos-to-amazon-ec2-using-amazon-system-manager-ca95ee7878f5
https://medium.com/@adhorn/injecting-chaos-to-amazon-ec2-using-amazon-system-manager-ca95ee7878f5
https://youtu.be/ztiPjey2rfY
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts-continuous-delivery-integration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/codebuild/latest/userguide/how-to-create-pipeline.html
https://aws.amazon.com/about-aws/whats-new/2019/11/automate-your-operational-playbooks-with-aws-systems-manager/
https://aws.amazon.com/marketplace/search/results?searchTerms=Continuous+integration&ref=wellarchitected

Amazon Web Services Reliability Pillar

 62

• APN Partner: partners that can help with implementation of a continuous

integration pipeline

Labs

• Well-Architected lab: Level 300: Testing for Resiliency of EC2 RDS and S3

External Links

• Principles of Chaos Engineering

• Resilience Engineering: Learning to Embrace Failure

• Apache JMeter

Books

• Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak, Nora Jones, Ali Basiri.

“Chaos Engineering” (August 2017)

Plan for Disaster Recovery (DR)

Having backups and redundant workload components in place is the start of your DR

strategy. RTO and RPO are your objectives for restoration of availability. Set these

based on business needs. Implement a strategy to meet these objectives, considering

locations and function of workload resources and data.

Define recovery objectives for downtime and data loss: The workload has a

recovery time objective (RTO) and recovery point objective (RPO).

Recovery time objective (RTO) is the overall length of time a workload’s components

can be in the recovery phase, and therefore not available, before negatively impacting

the organization’s mission or mission/business processes.

Recovery point objective (RPO) is the overall length of time a workload’s data can be

unavailable, before negatively impacting the organization’s mission or mission/business

processes.

Necessarily, RPO must be less than RTO, as availability cannot be restored with critical

data.

Use defined recovery strategies to meet the recovery objectives: A disaster

recovery (DR) strategy has been defined to meet your workload objectives.

https://aws.amazon.com/partners/find/results/?keyword=Continuous+Integration&ref=wellarchitected
https://aws.amazon.com/partners/find/results/?keyword=Continuous+Integration&ref=wellarchitected
https://wellarchitectedlabs.com/Reliability/300_Testing_for_Resiliency_of_EC2_RDS_and_S3/README.html?ref=wellarchitected
https://principlesofchaos.org/
https://queue.acm.org/detail.cfm?id=2371297
https://github.com/apache/jmeter?ref=wellarchitected
https://learning.oreilly.com/library/view/chaos-engineering/9781491988459/

Amazon Web Services Reliability Pillar

 63

Unless you require a multi-region strategy, we advise you to meet your recovery

objectives in AWS using multiple Availability Zones within an AWS Region.

If necessary, when architecting a multi-region strategy for your workload, you should

choose one of the following strategies. They are listed in increasing order of complexity,

and decreasing order of RTO and RPO. DR Region refers to an AWS Region other than

the one used for your workload (or any AWS Region if your workload is on premises).

• Backup and restore (RPO in hours, RTO in 24 hours or less): Back up your

data and applications into the DR Region. Restore this data when necessary to

recover from a disaster.

• Pilot light (RPO in minutes, RTO in hours): Maintain a minimal version of an

environment always running the most critical core elements of your system in the

DR Region. When the time comes for recovery, you can rapidly provision a full-

scale production environment around the critical core.

• Warm standby (RPO in seconds, RTO in minutes): Maintain a scaled-down

version of a fully functional environment always running in the DR Region.

Business-critical systems are fully duplicated and are always on, but with a

scaled down fleet. When the time comes for recovery, the system is scaled up

quickly to handle the production load.

• Multi-region active-active (RPO is none or possibly seconds, RTO in seconds):

Your workload is deployed to, and actively serving traffic from, multiple AWS

Regions. This strategy requires you to synchronize users and data across the

Regions that you are using. When the time comes for recovery, use services like

Amazon Route 53 or AWS Global Accelerator to route your user traffic to where

your workload is healthy.

Amazon Web Services Reliability Pillar

 64

Recommendation

The difference between Pilot Light and Warm Standby can sometimes be

difficult to understand. Both include an environment running in your DR

Region. Between these, if your DR strategy involves deploying additional

infrastructure, use Pilot Light. If it only involves scaling up and scaling out

existing infrastructure, use Warm Standby. Choose between these based

on your RTO and RPO needs.

Test disaster recovery implementation to validate the implementation: Regularly

test failover to DR to ensure that RTO and RPO are met.

A pattern to avoid is developing recovery paths that are rarely executed. For example,

you might have a secondary data store that is used for read-only queries. When you

write to a data store and the primary fails, you might want to fail over to the secondary

data store. If you don’t frequently test this failover, you might find that your assumptions

about the capabilities of the secondary data store are incorrect. The capacity of the

secondary, which might have been sufficient when you last tested, may be no longer be

able to tolerate the load under this scenario. Our experience has shown that the only

error recovery that works is the path you test frequently. This is why having a small

number of recovery paths is best. You can establish recovery patterns and regularly test

them. If you have a complex or critical recovery path, you still need to regularly execute

that failure in production to convince yourself that the recovery path works. In the

example we just discussed, you should fail over to the standby regularly, regardless of

need.

Manage configuration drift at the DR site or region: Ensure that your infrastructure,

data, and configuration are as needed at the DR site or region. For example, check that

AMIs and service quotas are up to date.

AWS Config continuously monitors and records your AWS resource configurations. It

can detect drift and trigger AWS Systems Manager Automation to fix it and raise alarms.

AWS CloudFormation can additionally detect drift in stacks you have deployed.

Automate recovery: Use AWS or third-party tools to automate system recovery and

route traffic to the DR site or region.

Based on configured health checks, AWS services, such as Elastic Load Balancing and

AWS Auto Scaling, can distribute load to healthy Availability Zones while services, such

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html

Amazon Web Services Reliability Pillar

 65

as Amazon Route 53 and AWS Global Accelerator, can route load to healthy AWS

Regions.

For workloads on existing physical or virtual data centers or private clouds CloudEndure

Disaster Recovery, available through AWS Marketplace, enables organizations to set

up an automated disaster recovery strategy to AWS. CloudEndure also supports cross-

region / cross-AZ disaster recovery in AWS.

Resources

Videos

• AWS re:Invent 2019: Backup-and-restore and disaster-recovery solutions with

AWS (STG208)

Documentation

• What Is AWS Backup?

• Remediating Noncompliant AWS Resources by AWS Config Rules

• AWS Systems Manager Automation

• AWS CloudFormation: Detect Drift on an Entire CloudFormation Stack

• Amazon RDS: Cross-region backup copy

• RDS: Replicating a Read Replica Across Regions

• S3: Cross-Region Replication

• Route 53: Configuring DNS Failover

• CloudEndure Disaster Recovery

• How do I implement an Infrastructure Configuration Management solution on

AWS?

• CloudEndure Disaster Recovery to AWS

• AWS Marketplace: products that can be used for disaster recovery

• APN Partner: partners that can help with disaster recovery

https://youtu.be/7gNXfo5HZN8
https://youtu.be/7gNXfo5HZN8
https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html
https://docs.aws.amazon.com/config/latest/developerguide/remediation.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/detect-drift-stack.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.XRgn
http://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-configuring.html
https://aws.amazon.com/cloudendure-disaster-recovery/
https://aws.amazon.com/answers/configuration-management/aws-infrastructure-configuration-management/?ref=wellarchitected
https://aws.amazon.com/marketplace/pp/B07XQNF22L
https://aws.amazon.com/marketplace/search/results?searchTerms=Disaster+recovery&ref=wellarchitected
https://aws.amazon.com/partners/find/results/?keyword=Disaster+Recovery&ref=wellarchitected

Amazon Web Services Reliability Pillar

 66

Example Implementations for Availability Goals

In this section, we’ll review workload designs using the deployment of a typical web

application that consists of a reverse proxy, static content on Amazon S3, an application

server, and a SQL database for persistent storage of data. For each availability target,

we provide an example implementation. This workload could instead use containers or

AWS Lambda for compute and NoSQL (such as Amazon DynamoDB) for the database,

but the approaches are similar. In each scenario, we demonstrate how to meet

availability goals through workload design for these topics:

Topic For more information, see this section

Monitor resources Monitor Workload Resources

Adapt to changes in

demand

Design your Workload to Adapt to Changes in

Demand

Implement change Implement Change

Back up data Back up Data

Architect for resiliency Use fault isolation to protect your workload

Design your Workload to Withstand Component

Failures

Test resiliency Test Reliability

Plan for disaster recovery

(DR)

Plan for Disaster Recovery (DR)

Dependency Selection

We have chosen to use Amazon EC2 for our applications. We will show how using

Amazon RDS and multiple Availability Zones improves the availability of our

applications. We will use Amazon Route 53 for DNS. When we use multiple Availability

Zones, we will use Elastic Load Balancing. Amazon S3 is used for backups and static

content. As we design for higher reliability, we must use services with higher availability

Amazon Web Services Reliability Pillar

 67

themselves. See Appendix A: Designed-For Availability for Select AWS Services for the

design goals for the respective AWS services.

Single-Region Scenarios

2 9s (99%) Scenario

These workloads are helpful to the business, but it’s only an inconvenience if they are

unavailable. This type of workload can be internal tooling, internal knowledge

management, or project tracking. Or these can be actual customer-facing workloads but

served from an experimental service, with a feature toggle that can hide the service if

needed.

These workloads can be deployed with one Region and one Availability Zone.

Monitor resources

We will have simple monitoring, indicating whether the service home page is returning

an HTTP 200 OK status. When problems occur, our playbook will indicate that logging

from the instance will be used to establish root cause.

Adapt to changes in demand

We will have playbooks for common hardware failures, urgent software updates, and

other disruptive changes.

Implement change

We will use AWS CloudFormation to define our infrastructure as code, and specifically

to speed up reconstruction in the event of a failure.

Software updates are manually performed using a runbook, with downtime required for

the installation and restart of the service. If a problem happens during deployment, the

runbook describes how to roll back to the previous version.

Any corrections of the error are done using analysis of logs by the operations and

development teams, and the correction is deployed after the fix is prioritized and

completed.

Back up data

We will use a vendor or purpose built backup solution to send encrypted backup data to

Amazon S3 using a runbook. We will test that the backups work by restoring the data

and ensuring the ability to use it on a regular basis using a runbook. We configure

Amazon Web Services Reliability Pillar

 68

versioning on our Amazon S3 objects and remove permissions for deletion of the

backups. We use an Amazon S3 bucket lifecycle policy to archive or permanently delete

according to our requirements.

Architect for resiliency

Workloads are deployed with one Region and one Availability Zone. We deploy the

application, including the database, to a single instance.

Test resiliency

The deployment pipeline of new software is scheduled, with some unit testing, but

mostly white-box/black-box testing of the assembled workload.

Plan for disaster recovery (DR)

During failures we wait for the failure to finish, optionally routing requests to a static

website using DNS modification via a runbook. The recovery time for this will be

determined by the speed at which the infrastructure can be deployed and the database

restored to the most recent backup. This deployment can either be into the same

Availability Zone, or into a different Availability Zone, in the event of an Availability Zone

failure, using a runbook.

Availability design goal

We take 30 minutes to understand and decide to execute recovery, deploy the whole

stack in AWS CloudFormation in 10 minutes, assume that we deploy to a new

Availability Zone, and assume that the database can be restored in 30 minutes. This

implies that it takes about 70 minutes to recover from a failure. Assuming one failure per

quarter, our estimated impact time for the year is 280 minutes, or four hours and 40

minutes.

This means that the upper limit on availability is 99.9%. The actual availability also

depends on the real rate of failure, the duration of failure, and how quickly each failure

actually recovers. For this architecture, we require the application to be offline for

updates (estimating 24 hours per year: four hours per change, six times per year), plus

actual events. So referring to the table on application availability earlier in the

whitepaper we see that our availability design goal is 99%.

Amazon Web Services Reliability Pillar

 69

Summary

Topic Implementation

Monitor resources Site health check only; no alerting.

Adapt to changes in demand Vertical scaling via re-deployment.

Implement change Runbook for deploy and rollback.

Back up data Runbook for backup and restore.

Architect for resiliency Complete rebuild; restore from

backup.

Test resiliency Complete rebuild; restore from

backup.

Plan for disaster recovery (DR) Encrypted backups, restore to

different Availability Zone if needed.

3 9s (99.9%) Scenario

The next availability goal is for applications for which it’s important to be highly

available, but they can tolerate short periods of unavailability. This type of workload is

typically used for internal operations that have an effect on employees when they are

down. This type of workload can also be customer-facing, but are not high revenue for

the business and can tolerate a longer recovery time or recovery point. Such workloads

include administrative applications for account or information management.

We can improve availability for workloads by using two Availability Zones for our

deployment and by separating the applications to separate tiers.

Monitor resources

Monitoring will be expanded to alert on the availability of the website over all by

checking for an HTTP 200 OK status on the home page. In addition, there will be

alerting on every replacement of a web server and when the database fails over. We will

also monitor the static content on Amazon S3 for availability and alert if it becomes

Amazon Web Services Reliability Pillar

 70

unavailable. Logging will be aggregated for ease of management and to help in root

cause analysis.

Adapt to changes in demand

Automatic scaling is configured to monitor CPU utilization on EC2 instances, and add or

remove instances to maintain the CPU target at 70%, but with no fewer than one EC2

instance per Availability Zone. If load patterns on our RDS instance indicate that scale

up is needed, we will change the instance type during a maintenance window.

Implement change

The infrastructure deployment technologies remain the same as the previous scenario.

Delivery of new software is on a fixed schedule of every two to four weeks. Software

updates will be automated, not using canary or blue/green deployment patterns, but

rather, using replace in place. The decision to roll back will be made using the runbook.

We will have playbooks for establishing root cause of problems. After the root cause

has been identified, the correction for the error will be identified by a combination of the

operations and development teams. The correction will be deployed after the fix is

developed.

Back up data

Backup and restore can be done using Amazon RDS. It will be executed regularly using

a runbook to ensure that we can meet recovery requirements.

Architect for resiliency

We can improve availability for applications by using two Availability Zones for our

deployment and by separating the applications to separate tiers. We will use services

that work across multiple Availability Zones, such as Elastic Load Balancing, Auto

Scaling and Amazon RDS Multi-AZ with encrypted storage via AWS Key Management

Service. This will ensure tolerance to failures on the resource level and on the

Availability Zone level.

The load balancer will only route traffic to healthy application instances. The health

check needs to be at the data plane/application layer indicating the capability of the

application on the instance. This check should not be against the control plane. A health

check URL for the web application will be present and configured for use by the load

balancer and Auto Scaling, so that instances that fail are removed and replaced.

Amazon RDS will manage the active database engine to be available in the second

Amazon Web Services Reliability Pillar

 71

Availability Zone if the instance fails in the primary Availability Zone, then repair to

restore to the same resiliency.

After we have separated the tiers, we can use distributed system resiliency patterns to

increase the reliability of the application so that it can still be available even when the

database is temporarily unavailable during an Availability Zone failover.

Test resiliency

We do functional testing, same as in the previous scenario. We do not test the self-

healing capabilities of ELB, automatic scaling, or RDS failover.

We will have playbooks for common database problems, security-related incidents, and

failed deployments.

Plan for disaster recovery (DR)

Runbooks exist for total workload recovery and common reporting. Recovery uses

backups stored in the same region as the workload.

Availability design goal

We assume that at least some failures will require a manual decision to execute

recovery. However with the greater automation in this scenario, we assume that only

two events per year will require this decision. We take 30 minutes to decide to execute

recovery, and assume that recovery is completed within 30 minutes. This implies 60

minutes to recover from failure. Assuming two incidents per year, our estimated impact

time for the year is 120 minutes.

This means that the upper limit on availability is 99.95%. The actual availability also

depends on the real rate of failure, the duration of the failure, and how quickly each

failure actually recovers. For this architecture, we require the application to be briefly

offline for updates, but these updates are automated. We estimate 150 minutes per year

for this: 15 minutes per change, 10 times per year. This adds up to 270 minutes per

year when the service is not available, so our availability design goal is 99.9%.

Amazon Web Services Reliability Pillar

 72

Summary

Topic Implementation

Monitor resources Site health check only; alerts sent

when down.

Adapt to changes in demand ELB for web and automatic scaling

application tier; resizing Multi-AZ

RDS.

Implement change Automated deploy in place and

runbook for rollback.

Back up data Automated backups via RDS to meet

RPO and runbook for restoring.

Architect for resiliency Automatic scaling to provide self-

healing web and application tier;

RDS is Multi-AZ.

Test resiliency ELB and application are self-healing;

RDS is Multi-AZ; no explicit testing.

Plan for disaster recovery (DR) Encrypted backups via RDS to same

AWS Region.

4 9s (99.99%) Scenario

This availability goal for applications requires the application to be highly available and

tolerant to component failures. The application must be able to absorb failures without

needing to get additional resources. This availability goal is for mission critical

applications that are main or significant revenue drivers for a corporation, such as an

ecommerce site, a business to business web service, or a high traffic content/media

site.

Amazon Web Services Reliability Pillar

 73

We can improve availability further by using an architecture that will be statically stable

within the Region. This availability goal doesn’t require a control plane change in

behavior of our workload to tolerate failure. For example, there should be enough

capacity to withstand the loss of one Availability Zone. We should not require updates to

Amazon Route 53 DNS. We should not need to create any new infrastructure, whether

it’s creating or modifying an S3 bucket, creating new IAM policies (or modifications of

policies), or modifying Amazon ECS task configurations.

Monitor resources

Monitoring will include success metrics as well as alerting when problems occur. In

addition, there will be alerting on every replacement of a failed web server, when the

database fails over, and when an AZ fails.

Adapt to changes in demand

We will use Amazon Aurora as our RDS, which enables automatic scaling of read

replicas. For these applications, engineering for read availability over write availability of

primary content is also a key architecture decision. Aurora can also automatically grow

storage as needed, in 10 GB increments up to 64 TB.

Implement change

We will deploy updates using canary or blue/green deployments into each isolation

zone separately. The deployments are fully automated, including a roll back if KPIs

indicate a problem.

Runbooks will exist for rigorous reporting requirements and performance tracking. If

successful operations are trending toward failure to meet performance or availability

goals, a playbook will be used to establish what is causing the trend. Playbooks will

exist for undiscovered failure modes and security incidents. Playbooks will also exist for

establishing the root cause of failures. We will also engage with AWS Support for

Infrastructure Event Management offering.

The team that builds and operates the website will identify the correction of error of any

unexpected failure and prioritize the fix to be deployed after it is implemented.

Back up data

Backup and restore can be done using Amazon RDS. It will be executed regularly using

a runbook to ensure that we can meet recovery requirements.

Amazon Web Services Reliability Pillar

 74

Architect for resiliency

We recommend three Availability Zones for this approach. Using a three Availability

Zone deployment, each AZ has static capacity of 50% of peak. Two Availability Zones

could be used, but the cost of the statically stable capacity would be more because both

zones would have to have 100% of peak capacity. We will add Amazon CloudFront to

provide geographic caching, as well as request reduction on our application’s data

plane.

We will use Amazon Aurora as our RDS and deploy read replicas in all three zones.

The application will be built using the software/application resiliency patterns in all

layers.

Test resiliency

The deployment pipeline will have a full test suite, including performance, load, and

failure injection testing.

We will practice our failure recovery procedures constantly through game days, using

runbooks to ensure that we can perform the tasks and not deviate from the procedures.

The team that builds the website also operates the website.

Plan for disaster recovery (DR)

Runbooks exist for total workload recovery and common reporting. Recovery uses

backups stored in the same region as the workload. Restore procedures are regularly

exercised as part of game days.

Availability design goal

We assume that at least some failures will require a manual decision to execute

recovery, however with greater automation in this scenario we assume that only two

events per year will require this decision and the recovery actions will be rapid. We take

10 minutes to decide to execute recovery, and assume that recovery is completed

within five minutes. This implies 15 minutes to recover from failure. Assuming two

failures per year, our estimated impact time for the year is 30 minutes.

This means that the upper limit on availability is 99.99%. The actual availability will also

depend on the real rate of failure, the duration of the failure, and how quickly each

failure actually recovers. For this architecture, we assume that the application is online

continuously through updates. Based on this, our availability design goal is 99.99%.

Amazon Web Services Reliability Pillar

 75

Summary

Amazon Web Services Reliability Pillar

 76

Topic Implementation

Monitor resources Health checks at all layers and on

KPIs; alerts sent when configured

alarms are tripped; alerting on all

failures. Operational meetings are

rigorous to detect trends and

manage to design goals.

Adapt to changes in demand ELB for web and automatic scaling

application tier; automatic scaling

storage and read replicas in multiple

zones for Aurora RDS.

Implement change Automated deploy via canary or

blue/green and automated rollback

when KPIs or alerts indicate

undetected problems in application.

Deployments are made by isolation

zone.

Back up data Automated backups via RDS to meet

RPO and automated restoration that

is practiced regularly in a game day.

Architect for resiliency Implemented fault isolation zones for

the application; auto scaling to

provide self-healing web and

application tier; RDS is Multi-AZ.

Test resiliency Component and isolation zone fault

testing is in pipeline and practiced

with operational staff regularly in a

game day; playbooks exist for

diagnosing unknown problems; and

a Root Cause Analysis process

exists.

Amazon Web Services Reliability Pillar

 77

Plan for disaster recovery (DR) Encrypted backups via RDS to same

AWS Region that is practiced in a

game day.

Multi-Region Scenarios

Implementing our application in multiple AWS Regions will increase the cost of

operation, partly because we isolate regions to maintain their independence. It should

be a very thoughtful decision to pursue this path. That said, regions provide a strong

isolation boundary and we take great pains to avoid correlated failures across regions.

Using multiple regions will give you greater control over your recovery time in the event

of a hard dependency failure on a regional AWS service. In this section, we’ll discuss

various implementation patterns and their typical availability.

3½ 9s (99.95%) with a Recovery Time between 5 and 30 Minutes

This availability goal for applications requires extremely short downtime and very little

data loss during specific times. Applications with this availability goal include

applications in the areas of: banking, investing, emergency services, and data capture.

These applications have very short recovery times and recovery points.

We can improve recovery time further by using a Warm Standby approach across two

AWS Regions. We will deploy the entire workload to both Regions, with our passive site

scaled down and all data kept eventually consistent. Both deployments will be statically

stable within their respective regions. The applications should be built using the

distributed system resiliency patterns. We’ll need to create a lightweight routing

component that monitors for workload health, and can be configured to route traffic to

the passive region if necessary.

Monitor resources

There will be alerting on every replacement of a web server, when the database fails

over, and when the Region fails over. We will also monitor the static content on Amazon

S3 for availability and alert if it becomes unavailable. Logging will be aggregated for

ease of management and to help in root cause analysis in each Region.

The routing component monitors both our application health and any regional hard

dependencies we have.

Amazon Web Services Reliability Pillar

 78

Adapt to changes in demand

Same as the 4 9s scenario.

Implement change

Delivery of new software is on a fixed schedule of every two to four weeks. Software

updates will be automated using canary or blue/green deployment patterns.

Runbooks exist for when Region failover occurs, for common customer issues that

occur during those events, and for common reporting.

We will have playbooks for common database problems, security-related incidents,

failed deployments, unexpected customer issues on Region failover, and establishing

root cause of problems. After the root cause has been identified, the correction of error

will be identified by a combination of the operations and development teams and

deployed when the fix is developed.

We will also engage with AWS Support for Infrastructure Event Management.

Back up data

Like the 4 9s scenario, we automatic RDS backups and use S3 versioning. Data is

automatically and asynchronously replicated from the Aurora RDS cluster in the active

region to cross-region read replicas in the passive region. S3 cross-region replication is

used to automatically and asynchronously move data from the active to the passive

region.

Architect for resiliency

Same as the 4 9s scenario, plus regional failover is possible. This is managed manually.

During failover, we will route requests to a static website using DNS failover until

recovery in the second Region.

Test resiliency

Same as the 4 9s scenario plus we will validate the architecture through game days

using runbooks. Also RCA correction is prioritized above feature releases for

immediate implementation and deployment

Plan for disaster recovery (DR)

Regional failover is manually managed. All data is asynchronously replicated.

Infrastructure in the warm standby is scaled out. This can be automated using a

workflow executed on AWS Step Functions. AWS Systems Manager (SSM) can also

Amazon Web Services Reliability Pillar

 79

help with this automation, as you can create SSM documents that update Auto Scaling

groups and resize instances.

Availability design goal

We assume that at least some failures will require a manual decision to execute

recovery, however with good automation in this scenario we assume that only two

events per year will require this decision. We take 20 minutes to decide to execute

recovery, and assume that recovery is completed within 10 minutes. This implies that it

takes 30 minutes to recover from failure. Assuming two failures per year, our estimated

impact time for the year is 60 minutes.

This means that the upper limit on availability is 99.95%. The actual availability will also

depend on the real rate of failure, the duration of the failure, and how quickly each

failure actually recovers. For this architecture, we assume that the application is online

continuously through updates. Based on this, our availability design goal is 99.95%.

Summary

Amazon Web Services Reliability Pillar

 80

Topic Implementation

Monitor resources Health checks at all layers, including

DNS health at AWS Region level,

and on KPIs; alerts sent when

configured alarms are tripped;

alerting on all failures. Operational

meetings are rigorous to detect

trends and manage to design goals.

Adapt to changes in demand ELB for web and automatic scaling

application tier; automatic scaling

storage and read replicas in multiple

zones in the active and passive

regions for Aurora RDS. Data and

infrastructure synchronized between

AWS Regions for static stability.

Implement change Automated deploy via canary or

blue/green and automated rollback

when KPIs or alerts indicate

undetected problems in application,

deployments are made to one

isolation zone in one AWS Region at

a time.

Back up data Automated backups in each AWS

Region via RDS to meet RPO and

automated restoration that is

practiced regularly in a game day.

Aurora RDS and S3 data is

automatically and asynchronously

replicated from active to passive

region.

Amazon Web Services Reliability Pillar

 81

Architect for resiliency Automatic scaling to provide self-

healing web and application tier;

RDS is Multi-AZ; regional failover is

managed manually with static site

presented while failing over.

Test resiliency Component and isolation zone fault

testing is in pipeline and practiced

with operational staff regularly in a

game day; playbooks exist for

diagnosing unknown problems; and

a Root Cause Analysis process

exists, with communication paths for

what the problem was, and how it

was corrected or prevented. RCA

correction is prioritized above feature

releases for immediate

implementation and deployment.

Plan for disaster recovery (DR) Warm Standby deployed in another

region. Infrastructure is scaled out

using workflows executed using

AWS Step Functions or AWS

Systems Manager Documents.

Encrypted backups via RDS. Cross-

region read replicas between two

AWS Regions. Cross-region

replication of static assets in S3.

Restoration is to the current active

AWS Region, is practiced in a game

day, and is coordinated with AWS.

5 9s (99.999%) or Higher Scenario with a Recovery Time under 1
minute

This availability goal for applications requires almost no downtime or data loss for

specific times. Applications that could have this availability goal include, for example

Amazon Web Services Reliability Pillar

 82

certain banking, investing, finance, government, and critical business applications that

are the core business of an extremely large-revenue generating business. The desire is

to have strongly consistent data stores and complete redundancy at all layers. We have

selected a SQL-based data store. However, in some scenarios, we will find it difficult to

achieve a very small RPO. If you can partition your data, it’s possible to have no data

loss. This might require you to add application logic and latency to ensure that you have

consistent data between geographic locations, as well as the capability to move or copy

data between partitions. Performing this partitioning might be easier if you use a NoSQL

database.

We can improve availability further by using an Active-Active or Multi-master approach

across multiple AWS Regions. The workload will be deployed in all desired Regions that

are statically stable across regions (so the remaining regions can handle load with the

loss of one region). A routing layer directs traffic to geographic locations that are

healthy and automatically changes the destination when a location is unhealthy, as well

as temporarily stopping the data replication layers. Amazon Route 53 offers 10-second

interval health checks and also offers TTL on your record sets as low as one second.

Monitor resources

Same as the 3½ 9s scenario, plus alerting when a Region is detected as unhealthy, and

traffic is routed away from it.

Adapt to changes in demand

Same as the 3½ 9s scenario.

Implement change

The deployment pipeline will have a full test suite, including performance, load, and

failure injection testing. We will deploy updates using canary or blue/green deployments

to one isolation zone at a time, in one Region before starting at the other. During the

deployment, the old versions will still be kept running on instances to facilitate a faster

rollback. These are fully automated, including a rollback if KPIs indicate a problem.

Monitoring will include success metrics as well as alerting when problems occur.

Runbooks will exist for rigorous reporting requirements and performance tracking. If

successful operations are trending towards failure to meet performance or availability

goals, a playbook will be used to establish what is causing the trend. Playbooks will

exist for undiscovered failure modes and security incidents. Playbooks will also exist for

establishing root cause of failures.

Amazon Web Services Reliability Pillar

 83

The team that builds the website also operates the website. That team will identify the

correction of error of any unexpected failure and prioritize the fix to be deployed after it’s

implemented. We will also engage with AWS Support for Infrastructure Event

Management.

Back up data

Same as the 3½ 9s scenario.

Architect for resiliency

The applications should be built using the software/application resiliency patterns. It’s

possible that many other routing layers may be required to implement the needed

availability. The complexity of this additional implementation should not be

underestimated. The application will be implemented in deployment fault isolation

zones, and partitioned and deployed such that even a Region wide-event will not affect

all customers.

Test resiliency

We will validate the architecture through game days using runbooks to ensure that we

can perform the tasks and not deviate from the procedures.

Plan for disaster recovery (DR)

Active-Active multi-region deployment with complete workload infrastructure and data in

multiple regions. Using a read local, write global strategy, one region is the master

database for all writes, and data is replicated for reads to other regions. If the master

DB region fails, a new DB will need to be promoted. Read local, write global has users

assigned to a home region where DB writes are handled. This lets users read or write

from any region, but requires complex logic to manage potential data conflicts across

writes in different regions.

When a region is detected as unhealthy, the routing layer automatically routes traffic to

the remaining healthy regions. No manual intervention is required.

Data stores must be replicated between the Regions in a manner that can resolve

potential conflicts. Tools and automated processes will need to be created to copy or

move data between the partitions for latency reasons and to balance requests or

amounts of data in each partition. Remediation of the data conflict resolution will also

require additional operational runbooks.

Amazon Web Services Reliability Pillar

 84

Availability design goal

We assume that heavy investments are made to automate all recovery, and that

recovery can be completed within one minute. We assume no manually triggered

recoveries, but up to one automated recovery action per quarter. This implies four

minutes per year to recover. We assume that the application is online continuously

through updates. Based on this, our availability design goal is 99.999%.

Summary

Amazon Web Services Reliability Pillar

 85

Topic Implementation

Monitor resources Health checks at all layers, including

DNS health at AWS Region level,

and on KPIs; alerts sent when

configured alarms are tripped;

alerting on all failures. Operational

meetings are rigorous to detect

trends and manage to design goals.

Adapt to changes in demand ELB for web and automatic scaling

application tier; automatic scaling

storage and read replicas in multiple

zones in the active and passive

regions for Aurora RDS. Data and

infrastructure synchronized between

AWS Regions for static stability.

Implement change Automated deploy via canary or

blue/green and automated rollback

when KPIs or alerts indicate

undetected problems in application,

deployments are made to one

isolation zone in one AWS Region at

a time.

Back up data Automated backups in each AWS

Region via RDS to meet RPO and

automated restoration that is

practiced regularly in a game day.

Aurora RDS and S3 data is

automatically and asynchronously

replicated from active to passive

region.

Amazon Web Services Reliability Pillar

 86

Architect for resiliency Implemented fault isolation zones for

the application; auto scaling to

provide self-healing web and

application tier; RDS is Multi-AZ;

regional failover automated.

Test resiliency Component and isolation zone fault

testing is in pipeline and practiced

with operational staff regularly in a

game day; playbooks exist for

diagnosing unknown problems; and

a Root Cause Analysis process

exists with communication paths for

what the problem was, and how it

was corrected or prevented. RCA

correction is prioritized above feature

releases for immediate

implementation and deployment.

Plan for disaster recovery (DR) Active-Active deployed across at

least two regions. Infrastructure is

fully scaled and statically stable

across regions. Data is partitioned

and synchronized across regions.

Encrypted backups via RDS. Region

failure is practiced in a game day,

and is coordinated with AWS. During

restoration a new database master

may need to be promoted.

Resources

Documentation

• The Amazon Builders' Library - How Amazon builds and operates software

• AWS Architecture Center

https://aws.amazon.com/builders-library/
https://aws.amazon.com/architecture/

Amazon Web Services Reliability Pillar

 87

Labs

• AWS Well-Architected Reliability Labs

External Links

• Adaptive Queuing Pattern: Fail at Scale

• Calculating Total System Availability

Books

• Robert S. Hammer “Patterns for Fault Tolerant Software”

• Andrew Tanenbaum and Marten van Steen “Distributed Systems: Principles and

Paradigms”

Conclusion

Whether you are new to the topics of availability and reliability, or a seasoned veteran

seeking insights to maximize your mission critical workload’s availability, we hope this

whitepaper has triggered your thinking, offered a new idea, or introduced a new line of

questioning. We hope this leads to a deeper understanding of the right level of

availability based on the needs of your business, and how to design the reliability to

achieve it. We encourage you to take advantage of the design, operational, and

recovery-oriented recommendations offered here as well as the knowledge and

experience of our AWS Solution Architects. We’d love to hear from you–especially

about your success stories achieving high levels of availability on AWS. Contact your

account team or use Contact US on our website.

https://wellarchitectedlabs.com/Reliability/README.html?ref=wellarchitected
http://queue.acm.org/detail.cfm?id=2839461
http://www.delaat.net/rp/2013-2014/p17/report.pdf
https://www.amazon.com/Patterns-Fault-Tolerant-Software-Wiley-ebook/dp/B00DXK33SK/
https://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/
https://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/
https://aws.amazon.com/contact-us/

Amazon Web Services Reliability Pillar

 88

Contributors

Contributors to this document include:

• Seth Eliot, Principal Reliability Solutions Architect, Well-Architected, Amazon

Web Services

• Adrian Hornsby, Principal Technical Evangelist, Architecture, Amazon Web

Services

• Philip Fitzsimons, Sr Manager Well-Architected, Amazon Web Services

• Rodney Lester, Reliability Lead, Well-Architected Amazon Web Services

• Kevin Miller, Director Software Development, Amazon Web Services

• Shannon Richards, Sr. Technical Program Manager, Amazon Web Services

Further Reading

For additional information, see:

• AWS Well-Architected Framework

https://aws.amazon.com/architecture/well-architected

Amazon Web Services Reliability Pillar

 89

Document Revisions

Date Description

July 2020 Updated Appendix A to add the Availability Design Goal for

AWS Global Accelerator

April 2020 Substantial updates and new/revised content, including:

• Added “Workload Architecture” best practices section

• Re-organized best practices into Change Management and
Failure Management sections

• Updated Resources

• Updated to include latest AWS resources and services such
as AWS Global Accelerator, AWS Service Quotas, and
AWS Transit Gateway

• Added/updated definitions for Reliability, Availability,
Resiliency

• Better aligned whitepaper to the AWS Well-Architected Tool
(questions and best practices) used for Well-Architected
Reviews

• Re-order design principles, moving Automatically recover
from failure before Test recovery procedures

• Updated diagrams and formats for equations

• Removed Key Services sections and instead integrated
references to key AWS services into the best practices

October 2019 Fixed broken link

April 2019 Appendix A updated

September 2018 Added specific AWS Direct Connect networking

recommendations and additional service design goals

June 2018 Added Design Principles and Limit Management sections.

Updated links, removed ambiguity of upstream/downstream

terminology, and added explicit references to the remaining

Reliability Pillar topics in the availability scenarios.

March 2018 Changed DynamoDB Cross Region solution to DynamoDB

Global Tables

Added service design goals

Amazon Web Services Reliability Pillar

 90

Date Description

December 2017 Minor correction to availability calculation to include application

availability

November 2017 Updated to provide guidance on high availability designs,

including concepts, best practice and example implementations.

November 2016 First publication

Amazon Web Services Reliability Pillar

 91

Appendix A: Designed-For Availability for Select

AWS Services

Below, we provide the availability that select AWS services were designed to achieve.

These values do not represent a Service Level Agreement or guarantee, but rather

provide insight to the design goals of each service. In certain cases, we differentiate

portions of the service where there’s a meaningful difference in the availability design

goal. This list is not comprehensive for all AWS services, and we expect to periodically

update with information about additional services. Amazon CloudFront, Amazon Route

53, AWS Global Accelerator, and the Identity and Access Management Control Plane

provide global service, and the component availability goal is stated accordingly. Other

services provide services within an AWS Region and the availability goal is stated

accordingly. Many services provide independence between Availability Zones. In these

cases, we provide the availability design goal for a single AZ, and when any two (or

more) Availability Zones are used.

NOTE: The numbers in the following table do not refer to durability (long term retention

of data); they are availability numbers (access to data or functions.)

Service Component

Availability

Design Goal

Amazon API Gateway Control Plane 99.950%

 Data Plane 99.990%

Amazon Aurora Control Plane 99.950%

Single-AZ Data Plane 99.950%

Multi-AZ Data Plane 99.990%

AWS CloudFormation Service 99.950%

Amazon CloudFront Control Plane 99.900%

Data Plane (content delivery) 99.990%

Amazon CloudSearch Control Plane 99.950%

Data Plane 99.950%

Amazon CloudWatch CW Metrics (service) 99.990%

Amazon Web Services Reliability Pillar

 92

Service Component

Availability

Design Goal

CW Events (service) 99.990%

CW Logs (service) 99.950%

AWS Database Migration

Service

Control Plane 99.900%

Data Plane 99.950%

AWS Data Pipeline Service 99.990%

Amazon DynamoDB Service (standard) 99.990%

Service (Global Tables) 99.999%

Amazon EC2 Control Plane 99.950%

Single-AZ Data Plane 99.950%

Multi-AZ Data Plane 99.990%

Amazon ElastiCache Service 99.990%

Amazon Elastic Block

Store

Control Plane 99.950%

Data Plane (volume

availability)

99.999%

Amazon Elasticsearch Control Plane 99.950%

Data Plane 99.950%

Amazon EMR Control Plane 99.950%

Amazon S3 Glacier Service 99.900%

AWS Global Accelerator Control Plane 99.900%

Data Plane 99.995%

AWS Glue Service 99.990%

Amazon Kinesis Data

Streams

Service 99.990%

Amazon Kinesis Data

Firehose

Service 99.900%

Amazon Web Services Reliability Pillar

 93

Service Component

Availability

Design Goal

Amazon Kinesis Video

Streams

Service 99.900%

Amazon Neptune Service 99.900%

Amazon RDS Control Plane 99.950%

Single-AZ Data Plane 99.950%

Multi-AZ Data Plane 99.990%

Amazon Rekognition Service 99.980%

Amazon Redshift Control Plane 99.950%

Data Plane 99.950%

Amazon Route 53 Control Plane 99.950%

Data Plane (query resolution) 100.000%

Amazon SageMaker Data Plane (Model Hosting) 99.990%

Control Plane 99.950%

Amazon S3 Service (Standard) 99.990%

AWS Auto Scaling Control Plane 99.900%

Data Plane 99.990%

AWS Batch Control Plane 99.900%

Data Plane 99.950%

AWS CloudHSM Control Plane 99.900%

Single-AZ Data Plane 99.900%

Multi-AZ Data Plane 99.990%

AWS CloudTrail Control Plane (config) 99.900%

Data Plane (data events) 99.990%

Amazon Web Services Reliability Pillar

 94

Service Component

Availability

Design Goal

Data Plane (management

events)

99.999%

AWS Config Service 99.950%

AWS Direct Connect Control Plane 99.900%

Single Location Data Plane 99.900%

Multi Location Data Plane 99.990%

Amazon Elastic File

System

Control Plane 99.950%

Data Plane 99.990%

AWS Identity and Access

Management

Control Plane 99.900%

Data Plane (authentication) 99.995%

AWS IoT Core Service 99.900%

AWS IoT Device

Management

Service 99.900%

AWS IoT Greengrass Service 99.900%

AWS Lambda Function Invocation 99.950%

AWS Secrets Manager Service 99.900%

AWS Shield Control Plane 99.500%

Data Plane (detection) 99.000%

Data Plane (mitigation) 99.900%

AWS Storage Gateway Control Plane 99.950%

Data Plane 99.950%

AWS X-Ray Control Plane (console) 99.900%

Data Plane 99.950%

EC2 Container Service Control Plane 99.900%

Amazon Web Services Reliability Pillar

 95

Service Component

Availability

Design Goal

EC2 Container Registry 99.990%

EC2 Container Service 99.990%

Elastic Load Balancing Control Plane 99.950%

Data Plane 99.990%

Key Management System

(KMS)

Control Plane 99.990%

Data Plane 99.995%

	Introduction
	Reliability
	Design Principles
	Definitions
	Resiliency, and the components of Reliability
	Availability
	Recovery Time Objective (RTO) and Recovery Point Objective (RPO)

	Understanding Availability Needs

	Foundations
	Manage Service Quotas and Constraints
	Resources

	Plan your Network Topology
	Resources

	Workload Architecture
	Design Your Workload Service Architecture
	Resources
	Documentation
	External Links

	Design Interactions in a Distributed System to Prevent Failures
	Resources
	Videos
	Documentation

	Design Interactions in a Distributed System to Mitigate or Withstand Failures
	Resources
	Video
	Documentation
	Labs
	External Links
	Books

	Change Management
	Monitor Workload Resources
	Resources
	Documentation

	Design your Workload to Adapt to Changes in Demand
	Resources
	Documentation
	External Links

	Implement Change
	Additional deployment patterns to minimize risk:
	Operational Readiness Reviews (ORRs)

	Resources
	Videos
	Documentation
	Labs
	External Links

	Failure Management
	Back up Data
	Resources
	Videos
	Documentation
	Labs

	Use Fault Isolation to Protect Your Workload
	Resources
	Videos
	Documentation

	Design your Workload to Withstand Component Failures
	Resources
	Videos
	Documentation
	Labs
	External Links

	Test Reliability
	Resources
	Videos
	Documentation
	Labs
	External Links
	Books

	Plan for Disaster Recovery (DR)
	Resources
	Videos
	Documentation

	Example Implementations for Availability Goals
	Dependency Selection
	Single-Region Scenarios
	2 9s (99%) Scenario
	Monitor resources
	Adapt to changes in demand
	Implement change
	Back up data
	Architect for resiliency
	Test resiliency
	Plan for disaster recovery (DR)
	Availability design goal
	Summary

	3 9s (99.9%) Scenario
	Monitor resources
	Adapt to changes in demand
	Implement change
	Back up data
	Architect for resiliency
	Test resiliency
	Plan for disaster recovery (DR)
	Availability design goal
	Summary

	4 9s (99.99%) Scenario
	Monitor resources
	Adapt to changes in demand
	Implement change
	Back up data
	Architect for resiliency
	Test resiliency
	Plan for disaster recovery (DR)
	Availability design goal
	Summary

	Multi-Region Scenarios
	3½ 9s (99.95%) with a Recovery Time between 5 and 30 Minutes
	Monitor resources
	Adapt to changes in demand
	Implement change
	Back up data
	Architect for resiliency
	Test resiliency
	Plan for disaster recovery (DR)
	Availability design goal

	5 9s (99.999%) or Higher Scenario with a Recovery Time under 1 minute
	Monitor resources
	Adapt to changes in demand
	Implement change
	Back up data
	Architect for resiliency
	Test resiliency
	Plan for disaster recovery (DR)
	Availability design goal

	Resources
	Documentation
	Labs
	External Links
	Books

	Conclusion
	Contributors
	Further Reading
	Document Revisions
	Appendix A: Designed-For Availability for Select AWS Services

